Deepseek开源R1系列模型,纯RL助力推理能力大跃升!

简介: 近期Deepseek正式发布 DeepSeek-R1,并同步开源模型权重。DeepSeek-R1 遵循 MIT License,允许用户通过蒸馏技术借助 R1 训练其他模型。

近期Deepseek正式发布 DeepSeek-R1,并同步开源模型权重。DeepSeek-R1 遵循 MIT License,允许用户通过蒸馏技术借助 R1 训练其他模型。

01.模型介绍

性能对齐OpenAI-o1正式版

DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版。

在此,DeepSeek将 DeepSeek-R1 训练技术全部公开,以期促进技术社区的充分交流与创新协作。

论文链接:

https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf

模型链接:

https://modelscope.cn/collections/DeepSeek-R1-c8e86ac66ed943

蒸馏小模型超越 OpenAI o1-mini

DeepSeek在开源 DeepSeek-R1-Zero 和 DeepSeek-R1 两个 660B 模型的同时,通过 DeepSeek-R1 的输出,蒸馏了 6 个小模型开源给社区,其中 32B 和 70B 模型在多项能力上实现了对标 OpenAI o1-mini 的效果。

02.模型推理

使用vLLM推理

在魔搭社区免费算力上(单卡24G显存),使用vLLM推理deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B

在vLLM上使用魔搭的模型只需要在任何vLLM命令之前设置一个环境变量:

export VLLM_USE_MODELSCOPE=True

使用vLLM启动服务

vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B --tensor-parallel-size 1 --max-model-len 1024 --enforce-eager
模型推理
curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d '{
"model": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
"prompt": "which is bigger, 9.11 or 9.9",
"max_tokens": 512,
"temperature": 0
}'

使用ollama推理

设置ollama下启用

ollama serve
ollama run DeepSeek-R1任意GGUF模型
ollama run modelscope.cn/unsloth/DeepSeek-R1-Distill-Qwen-7B-GGUF

运行结果

03.模型微调

这里我们介绍使用ms-swift3对deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B进行微调。

在开始微调之前,请确保您的环境已正确安装:

# 安装ms-swift
git clone https://github.com/modelscope/ms-swift.git
cd ms-swift
pip install -e . -i https://mirrors.aliyun.com/pypi/simple/

我们给出可运行的微调demo和自定义数据集的样式,微调脚本如下:

nproc_per_node=2
NPROC_PER_NODE=$nproc_per_node \
CUDA_VISIBLE_DEVICES=0,1 \
swift sft \
    --model deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
    --train_type full \
    --dataset 'PowerInfer/QWQ-LONGCOT-500K#2000' swift/self-cognition \
    --torch_dtype bfloat16 \
    --num_train_epochs 10 \
    --per_device_train_batch_size 2 \
    --per_device_eval_batch_size 2 \
    --learning_rate 1e-5 \
    --gradient_accumulation_steps $((16 / $nproc_per_node)) \
    --eval_steps 100 \
    --save_steps 100 \
    --save_total_limit -1 \
    --logging_steps 5 \
    --max_length 8192 \
    --output_dir output \
    --system 'You are a helpful and harmless assistant. You should think step-by-step.' \
    --warmup_ratio 0.05 \
    --dataloader_num_workers 4 \
    --deepspeed zero2 \
    --model_author 魔搭 ModelScope \
    --model_name 小黄 'Xiao Huang' \
    --dataset_num_proc 16

训练显存占用:

自定义数据集格式:(直接使用`--dataset <dataset_path>`指定即可)

{"messages": [{"role": "user", "content": "问题..."}, {"role": "assistant", "content": "<think>\n\n思考的内容...(可选)</think>\n\回答..."}, {"role": "user", "content": "问题..."}, {"role": "assistant", "content": "<think>\n\n思考的内容...(可选)</think>\n\n回答..."}]}

推理脚本:

CUDA_VISIBLE_DEVICES=0 \
swift infer \
    --model output/vx-xxx/checkpoint-xxx \
    --stream true \
    --max_new_tokens 2048

点击阅读原文:DeepSeek-R1

目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
DeepSeek 开源 R1 系列推理模型,性能对标 OpenAI o1,基于纯强化学习完成自我进化,无需监督微调
DeepSeek R1-Zero 是一款基于纯强化学习的开源推理模型,无需监督微调数据,支持多任务泛化与自我进化,适用于数学推理、代码生成等场景。
1250 21
DeepSeek 开源 R1 系列推理模型,性能对标 OpenAI o1,基于纯强化学习完成自我进化,无需监督微调
|
并行计算 PyTorch 算法框架/工具
本地部署DeepSeek模型
要在本地部署DeepSeek模型,需准备Linux(推荐Ubuntu 20.04+)或兼容的Windows/macOS环境,配备NVIDIA GPU(建议RTX 3060+)。安装Python 3.8+、PyTorch/TensorFlow等依赖,并通过官方渠道下载模型文件。配置模型后,编写推理脚本进行测试,可选使用FastAPI服务化部署或Docker容器化。注意资源监控和许可协议。
5593 13
|
11月前
|
机器学习/深度学习 自然语言处理 物联网
从零开始的DeepSeek微调训练实战(SFT)
本文重点介绍使用微调框架unsloth,围绕DeepSeek R1 Distill 7B模型进行高效微调,并介绍用于推理大模型高效微调的COT数据集的创建和使用方法,并在一个medical-o1-reasoning-SFT数据集上完成高效微调实战,并最终达到问答风格优化&知识灌注目的。
从零开始的DeepSeek微调训练实战(SFT)
|
人工智能 搜索推荐 Docker
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
DeepSeek R1 + LobeChat + Ollama:快速本地部署模型,创建个性化 AI 助手
7105 119
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
|
API 开发工具 Python
阿里云PAI部署DeepSeek及调用
本文介绍如何在阿里云PAI EAS上部署DeepSeek模型,涵盖7B模型的部署、SDK和API调用。7B模型只需一张A10显卡,部署时间约10分钟。文章详细展示了模型信息查看、在线调试及通过OpenAI SDK和Python Requests进行调用的步骤,并附有测试结果和参考文档链接。
3800 11
阿里云PAI部署DeepSeek及调用
|
人工智能 资源调度 API
AnythingLLM:34K Star!一键上传文件轻松打造个人知识库,构建只属于你的AI助手,附详细部署教程
AnythingLLM 是一个全栈应用程序,能够将文档、资源转换为上下文,支持多种大语言模型和向量数据库,提供智能聊天功能。
8214 76
|
11月前
|
机器学习/深度学习 缓存 人工智能
一文了解DeepSeek及应用场景
本文详细介绍了DeepSeek及其应用场景,涵盖了大模型的发展历程、基本原理和分类(通用与推理模型)。文章分析了DeepSeek的具体特性、性能优势、低成本训练与调用特点,以及其技术路线(如MoE、MLA架构),并与竞品进行了对比。此外,还探讨了DeepSeek在金融风控等领域的应用前景。
一文了解DeepSeek及应用场景
|
存储 人工智能 API
AgentScope:阿里开源多智能体低代码开发平台,支持一键导出源码、多种模型API和本地模型部署
AgentScope是阿里巴巴集团开源的多智能体开发平台,旨在帮助开发者轻松构建和部署多智能体应用。该平台提供分布式支持,内置多种模型API和本地模型部署选项,支持多模态数据处理。
8555 77
AgentScope:阿里开源多智能体低代码开发平台,支持一键导出源码、多种模型API和本地模型部署
|
机器学习/深度学习 人工智能 自然语言处理
全新开源通义千问Qwen3上架阿里云百炼
Qwen3是Qwen系列大型语言模型的最新成员,作为混合推理模型,其旗舰版本Qwen3-235B-A22B在代码、数学和通用能力测试中表现出色,与顶级模型DeepSeek-R1、o1、o3-mini等相比具有竞争力。小型MoE模型Qwen3-30B-A3B激活参数仅为QwQ-32B的10%,性能更优,甚至小规模模型Qwen3-4B也能匹敌Qwen2.5-72B-Instruct。Qwen3支持思考与非思考两种模式,可根据任务需求灵活调整推理深度,并支持119种语言,Qwen3在推理、工具调用及多语言处理等方面显著提升,目前已开源并在阿里云百炼平台上线,提供便捷体验。
4034 0
|
12月前
|
机器学习/深度学习 人工智能 编解码
阿里开源AI视频生成大模型 Wan2.1:14B性能超越Sora、Luma等模型,一键生成复杂运动视频
Wan2.1是阿里云开源的一款AI视频生成大模型,支持文生视频和图生视频任务,具备强大的视觉生成能力,性能超越Sora、Luma等国内外模型。
4105 2
阿里开源AI视频生成大模型 Wan2.1:14B性能超越Sora、Luma等模型,一键生成复杂运动视频

热门文章

最新文章