「全网最细 + 实战源码案例」设计模式——单例设计模式

简介: 单例模式是一种创建型设计模式,确保一个类在整个程序运行期间只有一个实例,并提供一个全局访问点来获取该实例。它常用于控制共享资源的访问,如数据库连接、配置管理等。实现方式包括饿汉式(类加载时初始化)、懒汉式(延迟加载)、双重检查锁、静态内部类和枚举单例等。其中,枚举单例最简单且安全,能有效防止反射和序列化破坏。

核心思想:

  • 属于创建型设计模式,核心目的是确保一个类在整个程序运行期间只有一个实例,并提供一个全局访问点来获取该实例。
  • 控制共享资源的访问(如数据库链接、配置管理、日志处理器等)
  • 真实世界类比:政府是单例模式的一个很好的示例。 一个国家只有一个官方政府。 不管组成政府的每个人的身份是什么,“某政府” 这一称谓总是鉴别那些掌权者的全局访问节点。

结构

所有单例的实现都包含以下两个相同的步骤:

  • 将默认构造函数设为私有,防止其他对象使用单例类的 new 运算符。
  • 新建一个静态构建方法作为构造函数。该函数会“偷偷”调用私有构造函数来创建对象,并将其保存在一个静态成员变量中。此后所有对于该函数的调用都将返回这一缓存对象。

如果你的代码能够访问单例类,那它就能调用单例类的静态方法。无论何时调用该方法,它总是会返回相同的对象。


使用场景:

1. 需要唯一实例的场景:

  • 配置管理类
  • 日志记录器
  • 数据库连接池
  • 多线程环境中的任务调度器

2. 需要全局共享实例

  • 以避免多个实例引发资源冲突或影响程序逻辑。

⭐实现方式:

1. 饿汉式(线程安全,类加载时初始化)

1.1. 静态变量式(常见方式)

// 饿汉式(静态变量)
public class Singleton {

    // 1. 私有化构造方法
    private Singleton() {}

    // 2. 创建一个静态变量,保存实例
    private static final Singleton instance = new Singleton();

    // 3. 提供一个公共的静态方法获取实例
    public static Singleton getInstance() {
        return instance;
    }
}

特点:

  • 线程安全:类加载时实例化,JVM 保证线程安全。
  • 缺点:类加载时即创建实例,即使未使用也会占用内存。

1.2. 静态代码块式

// 饿汉式(静态代码块)
public class Singleton {

    // 1. 私有化构造方法
    private Singleton(){}

    // 2. 创建一个静态对象
    private static Singleton instance;

    // 3. 在静态代码块中创建对象
    static {
        instance = new Singleton();
    }

    // 4. 提供获取对象的方法
    public static Singleton getInstance(){
        return instance;
    }
}

特点:

  • 和静态变量方式类似,在类加载时实例化。
  • 可以在静态代码块中加入额外逻辑,例如异常处理或配置初始化。

2. 懒汉式(线程不安全,延迟加载)

// 懒汉式,线程不安全
public class Singleton {

    // 1. 私有化构造方法
    private Singleton() {}

    // 2. 定义一个静态变量,用于存储唯一实例
    private static Singleton instance;

    // 3. 定义一个静态方法,用于获取唯一实例
    public static Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

优点:

  • 实例在第一次使用时才初始化,节约资源。

缺点:

  • 多线程情况下可能创建多个实例,线程不安全。

3. 线程安全的懒汉式

3.1. 同步方法

// 懒汉式,同步式,线程安全
public class Singleton {

    // 1. 私有化构造方法
    private Singleton() {}

    // 2. 定义一个静态变量,用于存储
    private static Singleton instance;

    // 3. 定义一个静态方法,用于获取唯一实例
    public static synchronized Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

缺点:

  • 同步方法会导致性能下降,尤其是高并发访问时。

3.2. 双重检查锁(推荐)

// 懒汉式,双重检查锁方式
public class Singleton {

    // 1. 私有化构造方法
    private Singleton() {}

    // 2. 定义一个静态变量,用于存储实例,volatile保证可见性与有序性,避免指令重排
    private static volatile Singleton instance;

    // 3. 定义一个静态方法,用于获取唯一实例
    public static Singleton getInstance() {
        // 1.第一次判断,如果instance的值为null,则进入同步代码块
        if (instance == null) {
            // 2.同步代码块,保证线程安全
            synchronized (Singleton.class) {
                // 3.第二次判断,如果instance的值为null,则创建实例
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

优点:

  • 高效,只有在首次实例化时会加锁,之后不会。

注意:volatile 关键字防止指令重排,确保线程安全。

⭐为什么必须要加 volatile

  1. 防止指令重排
    1. 在 Java 中,对象的实例化过程分为三步:
      1. 分配内存空间
      2. 初始化对象
      3. 将内存地址赋值给变量
    1. 由于指令重排的存在,步骤 2 和步骤 3 可能被调换执行。例如:
      1. 线程 A 在执行 instance = new Singleton() 时,可能执行了分配内存和赋值操作,但还未完成初始化。
      2. 此时,instance 已经不为 null,但它指向的对象尚未完全初始化。
    1. 如果线程 B 此时调用 getInstance(),判断 instance != null 为真,但实际访问的是一个未初始化完全的对象,这将导致程序出错。
    2. 加上 volatile 后,禁止指令重排序,确保初始化顺序正确。
  1. 保证变量的可见性
    1. Java 的内存模型中,每个线程有自己的工作内存。一个线程对变量的修改,可能不会立即被其他线程所见。
    2. 加上 volatile 后,保证每次对 instance读操作都能获取到最新的值
      1. 当线程 A 完成 instance 初始化后,其他线程(如 B 线程)立刻可见,而不会读取到旧值或中间状态。

3.3. ⭐静态内部类(推荐)

// 懒汉式,静态内部类方式
public class Singleton {

    // 1.构造函数私有化,外部不能new
    private Singleton() {}

    // 2.创建静态内部类
    private static class SingletonHolder {
        // 3.创建静态变量,保存实例
        private static final Singleton INSTANCE = new Singleton();
    }

    // 3.定义一个静态方法,用于获取唯一实例
    public static Singleton getInstance() {
        return SingletonHolder.INSTANCE;
    }
}

原理:

  • 由于 JVM 加载外部类的过程中,不会加载静态内部类,只有内部类的属性/方法被调用时才会被加载,并初始化其静态属性。静态属性由于被 static 修饰,保证只会被实例化一次,并且严格保证实例化顺序。

优点:

  • 线程安全
  • 实现了延迟加载,按需初始化

4. ⭐枚举单例(最安全,推荐)

// 枚举单例
public enum Singleton {
    INSTANCE;
}

优点:

  • 简单
  • 天然防止反射和序列化破坏单例

破坏单例

1. 序列化破坏单例

问题
序列化和反序列化可以通过 ObjectInputStream 创建一个新的实例,而不是返回现有的单例实例。

示例代码:

import java.io.*;

public class Singleton implements Serializable {
    private static final long serialVersionUID = 1L;

    private static final Singleton INSTANCE = new Singleton();

    private Singleton() {}

    public static Singleton getInstance() {
        return INSTANCE;
    }

    public static void main(String[] args) throws Exception {
        Singleton instance1 = Singleton.getInstance();

        // 将对象序列化到文件
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("singleton.obj"));
        oos.writeObject(instance1);
        oos.close();

        // 从文件反序列化对象
        ObjectInputStream ois = new ObjectInputStream(new FileInputStream("singleton.obj"));
        Singleton instance2 = (Singleton) ois.readObject();

        // 验证是否为同一个实例
        System.out.println(instance1 == instance2); // 输出:false
    }
}

原因

  • 序列化机制会通过反序列化的过程创建一个新的对象实例,而不会调用单例类中的 getInstance() 方法。

解决方案
实现 readResolve() 方法,确保反序列化时返回现有实例。

private Object readResolve() {
    return INSTANCE;
}

2. 反射破坏单例

问题
通过反射,能够直接调用私有构造方法,创建多个实例。

示例代码:

import java.lang.reflect.Constructor;

public class Singleton {
    private static final Singleton INSTANCE = new Singleton();

    private Singleton() {}

    public static Singleton getInstance() {
        return INSTANCE;
    }

    public static void main(String[] args) throws Exception {
        Singleton instance1 = Singleton.getInstance();

        // 使用反射创建新实例
        Constructor<Singleton> constructor = Singleton.class.getDeclaredConstructor();
        constructor.setAccessible(true);
        Singleton instance2 = constructor.newInstance();

        // 验证是否为同一个实例
        System.out.println(instance1 == instance2); // 输出:false
    }
}

原因

  • 反射可以访问私有构造方法并直接调用,从而绕过单例模式的限制。

解决方案

  1. 在构造方法中防止重复实例化
private static boolean isCreated = false;

private Singleton() {
    if (isCreated) {
        throw new RuntimeException("Singleton instance already created!");
    }
    isCreated = true;
}
  1. 使用枚举单例
    枚举类的单例天然防止反射和序列化破坏。
public enum Singleton {
    INSTANCE;
}

3. 总结

  • 序列化破坏:通过 readResolve() 方法解决。
  • 反射破坏:通过构造方法检查或使用枚举单例解决。
  • 推荐方式:使用 枚举单例,最简单且最安全,能有效防止这两种破坏。

在源码中的应用

1. **Runtime 类**

  • 简介Runtime 类允许应用程序与运行时环境交互,比如调用垃圾回收、运行外部命令等。
  • 实现方式:通过 饿汉式单例 实现。

源码分析

public class Runtime {
    private static final Runtime currentRuntime = new Runtime(); // 饿汉式实例化

    private Runtime() {} // 私有化构造方法

    public static Runtime getRuntime() {
        return currentRuntime; // 返回唯一实例
    }

    public void gc() {
        // 调用垃圾回收
    }

    public void exit(int status) {
        // 退出 JVM
    }
}

特点

  • 全局唯一实例。
  • 使用饿汉式,保证线程安全。

2. **Desktop 类**

  • 简介Desktop 类用来打开用户默认的应用程序(如浏览器、邮件客户端等)。
  • 实现方式:通过 懒汉式单例 实现。

源码分析

public final class Desktop {
    private static Desktop desktop;

    private Desktop() {}

    public static synchronized Desktop getDesktop() {
        if (desktop == null) {
            desktop = new Desktop(); // 懒汉式单例
        }
        return desktop;
    }

    public void browse(URI uri) {
        // 打开 URI
    }
}

特点

  • 使用同步方法保证线程安全。
  • 懒加载,实例在需要时创建。

3. **Logger 类( java.util.logging.Logger )**

  • 简介Logger 是 Java 的日志工具类,用于记录和管理应用程序日志。
  • 实现方式:内部使用单例模式管理全局日志管理器(LogManager)。

源码分析(核心部分):

public class Logger {
    private static final LogManager manager = LogManager.getLogManager(); // 单例的 LogManager

    protected Logger(String name, String resourceBundleName) {
        // Logger 构造方法
    }

    public static Logger getLogger(String name) {
        return manager.getLogger(name); // 通过单例 LogManager 获取 Logger
    }
}

特点

  • LogManager 作为单例管理所有 Logger 实例。
  • getLogger 方法确保每个名称对应的 Logger 是唯一的。

4. 总结

在 JDK 源码中,单例模式被广泛应用于需要 全局唯一实例资源共享 的场景:

  1. 饿汉式Runtime 类。
  2. 懒汉式Desktop 类。
  3. 组合模式Logger 类中的 LogManager 单例。

这些设计的核心目标是:确保全局状态的一致性、节省资源以及简化管理

单例模式优缺点:


与其他模式的关系:

  1. 外观模式类通常可以转换为单例模式类, 因为在大部分情况下一个外观对象就足够了。
  2. 如果你能将对象的所有共享状态简化为一个享元对象, 那么享元模式就和单例类似了。 但这两个模式有两个根本性的不同。
    1. 只会有一个单例实体, 但是享元类可以有多个实体, 各实体的内在状态也可以不同。
    2. 单例对象可以是可变的。 享元对象是不可变的。
  1. 抽象工厂模式生成器模式原型模式都可以用单例来实现。
目录
相关文章
|
15天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171335 12
|
18天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150296 32
|
26天前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201962 14
对话 | ECS如何构筑企业上云的第一道安全防线
|
4天前
|
机器学习/深度学习 自然语言处理 PyTorch
深入剖析Transformer架构中的多头注意力机制
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
|
8天前
|
存储 人工智能 安全
对话|无影如何助力企业构建办公安全防护体系
阿里云无影助力企业构建办公安全防护体系
1253 10
|
10天前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
|
8天前
|
人工智能 自然语言处理 程序员
通义灵码2.0全新升级,AI程序员全面开放使用
通义灵码2.0来了,成为全球首个同时上线JetBrains和VSCode的AI 程序员产品!立即下载更新最新插件使用。
1347 24
|
8天前
|
消息中间件 人工智能 运维
1月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
659 26
1月更文特别场——寻找用云高手,分享云&AI实践
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
|
14天前
|
人工智能 自然语言处理 API
阿里云百炼xWaytoAGI共学课DAY1 - 必须了解的企业级AI应用开发知识点
本课程旨在介绍阿里云百炼大模型平台的核心功能和应用场景,帮助开发者和技术小白快速上手,体验AI的强大能力,并探索企业级AI应用开发的可能性。