YOLOv11改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能

简介: 本文探讨了基于AIFI模块的YOLOv11目标检测改进方法。AIFI是RT-DETR中高效混合编码器的一部分,通过在S5特征层上应用单尺度Transformer编码器,减少计算成本并增强概念实体间的联系,从而提升对象定位和识别效果。实验表明,AIFI使模型延迟降低35%,准确性提高0.4%。

一、本文介绍

本文记录的是基于AIFI模块的YOLOv11目标检测改进方法研究AIFIRT-DETR中高效混合编码器的一部分,利用其改进YOLOv11模型,使网络在深层能够更好的捕捉到概念实体之间的联系,并有助于后续模块对对象进行定位和识别。


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、AIFI设计原理

RT-DETR模型结构:

在这里插入图片描述

AIFI(Attention-based Intra-scale Feature Interaction)模块的相关信息如下:

2.1、设计原理

AIFIRT-DETR中高效混合编码器的一部分。为了克服多尺度Transformer编码器中存在的计算瓶颈,RT-DETR对编码器结构进行了重新思考。

由于从低级特征中提取出的高级特征包含了关于对象的丰富语义信息,对级联的多尺度特征进行特征交互是冗余的。因此,AIFI基于此设计,通过使用单尺度Transformer编码器仅在S5特征层上进行尺度内交互,进一步降低了计算成本。

对高级特征应用自注意力操作,能够捕捉到概念实体之间的联系,这有助于后续模块对对象进行定位和识别。而低级特征由于缺乏语义概念,且与高级特征交互存在重复和混淆的风险,因此其尺度内交互是不必要的。

2.2、优势

与基准模型相比,AIFI不仅显著降低了延迟(快35%),而且提高了准确性(AP高0.4%)。

论文:https://arxiv.org/abs/2304.08069

三、AIFI模块的实现代码及模型配置

模块完整介绍、个人总结、实现代码、模块改进、以及各模型添加步骤参考如下地址:
https://blog.csdn.net/qq_42591591/article/details/142818434

目录
相关文章
|
9月前
|
机器学习/深度学习
YOLOv8改进 | 注意力篇 | ACmix自注意力与卷积混合模型(提高FPS+检测效率)
YOLOv8改进 | 注意力篇 | ACmix自注意力与卷积混合模型(提高FPS+检测效率)
372 0
|
3天前
|
机器学习/深度学习 编解码 异构计算
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
26 11
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
|
3天前
|
机器学习/深度学习 算法 计算机视觉
YOLOv11改进策略【Conv和Transformer】| 2024 AssemFormer 结合卷积与 Transformer 优势,弥补传统方法不足
YOLOv11改进策略【Conv和Transformer】| 2024 AssemFormer 结合卷积与 Transformer 优势,弥补传统方法不足
16 3
YOLOv11改进策略【Conv和Transformer】| 2024 AssemFormer 结合卷积与 Transformer 优势,弥补传统方法不足
|
3天前
|
机器学习/深度学习 编解码 BI
YOLOv11改进策略【Conv和Transformer】| CVPR-2023 BiFormer 稀疏自注意力,减少内存占用
YOLOv11改进策略【Conv和Transformer】| CVPR-2023 BiFormer 稀疏自注意力,减少内存占用
15 3
YOLOv11改进策略【Conv和Transformer】| CVPR-2023 BiFormer 稀疏自注意力,减少内存占用
|
13小时前
|
计算机视觉
YOLOv11改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能
YOLOv11改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能
15 9
YOLOv11改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能
|
3天前
|
计算机视觉 知识图谱
YOLOv11改进策略【Conv和Transformer】| ACmix 卷积和自注意力的结合,充分发挥两者优势
YOLOv11改进策略【Conv和Transformer】| ACmix 卷积和自注意力的结合,充分发挥两者优势
17 9
|
3天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用
YOLOv11改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用
8 0
YOLOv11改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用
|
14小时前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| 2023 显式视觉中心EVC 优化特征提取金字塔,对密集预测任务非常有效
YOLOv11改进策略【Neck】| 2023 显式视觉中心EVC 优化特征提取金字塔,对密集预测任务非常有效
16 8
|
3月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
131 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
7月前
|
机器学习/深度学习 计算机视觉 异构计算
【YOLOv8改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。
【YOLOv8改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。

相关实验场景

更多