北美七个站点的地面传感器(L2)每小时容积(立方厘米/立方厘米)土壤水分剖面图

本文涉及的产品
可观测监控 Prometheus 版,每月50GB免费额度
云原生网关 MSE Higress,422元/月
函数计算FC,每月15万CU 3个月
简介: 该数据集提供了2011-2015年北美七个站点的地面传感器每小时土壤水分剖面图(L2),涵盖2厘米至80厘米深度。作为AirMOSS项目的一部分,这些数据用于校准和验证机载雷达测量的根区土壤湿度,对研究地下水循环、气候变化等领域具有重要意义。数据以NetCDF v4格式存储,共29个文件。引用:Hagimoto et al., 2016, DOI: 10.3334/ORNLDAAC/1416。

AirMOSS: L2 Hourly In-Ground Soil Moisture at AirMOSS Sites, 2011-2015
北美七个站点的地面传感器(L2)每小时容积(立方厘米/立方厘米)土壤水分剖面图
简介
该数据集提供了 2 级(L2)每小时容积(立方厘米/立方厘米)土壤水分剖面图,这些数据来自北美七个站点的地面传感器,是机载次冠层和次表层微波观测站(AirMOSS)项目的一部分。每个站点安装了三个剖面,每个剖面在七个不同深度(2 厘米至 80 厘米)取样。2011 年 9 月开始在三个地点进行初步取样,2012 年和 2013 年期间又增加了其他地点。所有采样工作于 2015 年 12 月结束。AirMOSS 项目使用机载雷达仪器估算北美 10 个研究地点的根区土壤湿度。收集这些地面土壤水分数据是为了校准和验证 AirMOSS 数据。该数据集有 29 个 NetCDF v4 (*.nc4) 格式的文件。
摘要
AirMOSS是一个地球科学研究项目,其全称为"Airborne Microwave Observatory of Subcanopy and Subsurface"。该项目于2011年至2015年期间进行,旨在利用航空载荷的微波雷达技术来测量地下土壤湿度。
AirMOSS项目使用了NASA的C-20A飞机,装载了一个名为"L-band Synthetic Aperture Radar"(SAR)的微波雷达。该雷达发射和接收L波段(1-2 GHz)微波信号,通过测量信号的反射和散射来推断土壤湿度。该技术具有穿透力强、对地表植被影响小的优点。
该数据集中包含了2011年至2015年期间AirMOSS项目在各个观测点收集到的地下土壤湿度数据。这些数据以每小时为间隔进行记录,提供了地下0-100厘米深度范围内的土壤湿度变化情况。这些数据能够帮助科学家们了解土壤湿度的时空分布特征,以及土壤湿度与地表植被和气候变化的关系。
AirMOSS的数据对于研究地下水循环、土壤水分管理、气候变化和生态系统模拟等领域都具有重要意义。同时,这些数据也可以用于改进气象和水文模型的准确性,并提供更精确的土壤湿度监测与预测能力。
代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify

import pandas as pd
import leafmap

url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df

leafmap.nasa_data_login()

results, gdf = leafmap.nasa_data_search(
short_name="ABoVE_ASCENDS_XCO2_2050",
cloud_hosted=True,
bounding_box=(-165.68, 34.59, -98.1, 71.28),
temporal=("2017-07-20", "2017-08-08"),
count=-1, # use -1 to return all datasets
return_gdf=True,
)

gdf.explore()

leafmap.nasa_data_download(results[:5], out_dir="data")

引用
Hagimoto, Y., R. Cuenca, and AirMOSS Science Team. 2016. AirMOSS: L2 Hourly In-Ground Soil Moisture at AirMOSS Sites, 2011-2015. ORNL DAAC, Oak Ridge, Tennessee, USA. AirMOSS: L2 Hourly In-Ground Soil Moisture at AirMOSS Sites, 2011-2015, https://doi.org/10.3334/ORNLDAAC/1416
网址推荐
知识星球
知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)
https://wx.zsxq.com/group/48888525452428
机器学习
https://www.cbedai.net/xg
干旱监测平台
慧天干旱监测与预警-首页
https://www.htdrought.com/

相关文章
|
5天前
|
供应链 监控 安全
|
7天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150233 10
|
15天前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201928 14
对话 | ECS如何构筑企业上云的第一道安全防线
|
7天前
|
SQL 安全 前端开发
预编译为什么能防止SQL注入?
SQL注入是Web应用中常见的安全威胁,攻击者通过构造恶意输入执行未授权的SQL命令。预编译语句(Prepared Statements)是一种有效防御手段,它将SQL代码与数据分离,确保用户输入不会被解释为SQL代码的一部分。本文详细介绍了SQL注入的危害、预编译语句的工作机制,并结合实际案例和多语言代码示例,展示了如何使用预编译语句防止SQL注入,强调了其在提升安全性和性能方面的重要性。
|
3天前
|
人工智能 自然语言处理 API
阿里云百炼xWaytoAGI共学课DAY1 - 必须了解的企业级AI应用开发知识点
本课程旨在介绍阿里云百炼大模型平台的核心功能和应用场景,帮助开发者和技术小白快速上手,体验AI的强大能力,并探索企业级AI应用开发的可能性。
|
10天前
|
搜索推荐 物联网 PyTorch
Qwen2.5-7B-Instruct Lora 微调
本教程介绍如何基于Transformers和PEFT框架对Qwen2.5-7B-Instruct模型进行LoRA微调。
422 34
Qwen2.5-7B-Instruct Lora 微调
|
1月前
|
人工智能 自然语言处理 前端开发
从0开始打造一款APP:前端+搭建本机服务,定制暖冬卫衣先到先得
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。
9980 29
|
4天前
|
人工智能 算法 搜索推荐
阿里云百炼xWaytoAGI共学课开课:手把手学AI,大咖带你从零搭建AI应用
阿里云百炼xWaytoAGI共学课开课啦。大咖带你从零搭建AI应用,玩转阿里云百炼大模型平台。3天课程,涵盖企业级文本知识库案例、多模态交互应用实操等,适合有开发经验的企业或独立开发者。直播时间:2025年1月7日-9日 20:00,地点:阿里云/WaytoAGI微信视频号。参与课程可赢取定制保温杯、雨伞及磁吸充电宝等奖品。欢迎加入钉钉共学群(群号:101765012406),与百万开发者共学、共享、共实践!
|
3天前
|
SQL 存储 Apache
基于 Flink 进行增量批计算的探索与实践
本文整理自阿里云高级技术专家、Apache Flink PMC朱翥老师在Flink Forward Asia 2024的分享,内容分为三部分:背景介绍、工作介绍和总结展望。首先介绍了增量计算的定义及其与批计算、流计算的区别,阐述了增量计算的优势及典型需求场景,并解释了为何选择Flink进行增量计算。其次,详细描述了当前的工作进展,包括增量计算流程、执行计划生成、控制消费数据量级及执行进度记录恢复等关键技术点。最后,展示了增量计算的简单示例、性能测评结果,并对未来工作进行了规划。
263 5
基于 Flink 进行增量批计算的探索与实践