基于PPO强化学习的buckboost升降压电路控制系统matlab仿真,对比PID控制器

简介: 本项目利用MATLAB 2022a对基于PPO强化学习的Buck-Boost电路控制系统进行仿真,完整代码无水印。通过与环境交互,智能体学习最优控制策略,实现输出电压稳定控制。训练过程包括初始化参数、收集经验数据、计算优势和奖励函数并更新参数。附带操作视频指导,方便用户理解和应用。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.jpeg
2.jpeg
3.jpeg

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
随着电力电子技术的不断发展,Buck-Boost 升降压电路在各种电源转换和能量管理系统中得到了广泛应用。传统的 Buck-Boost 电路控制方法通常基于固定的控制策略,难以适应复杂多变的工作环境和负载条件。强化学习作为一种智能控制方法,能够通过与环境的交互学习最优控制策略,为 Buck-Boost 电路控制提供了新的思路。

2.1 强化学习
强化学习是一种通过智能体与环境的交互来学习最优策略的方法。强化学习框架主要包括智能体、环境、状态、动作和奖励等要素。智能体根据当前的状态选择一个动作,环境根据智能体的动作返回一个新的状态和奖励。智能体的目标是通过不断地与环境交互,学习到一个最优策略,使得长期累积奖励最大化。

4.png

   策略梯度算法是一类用于求解强化学习问题的算法。策略梯度算法通过直接优化策略函数的参数来寻找最优策略。策略梯度算法的基本思想是计算策略函数对参数的梯度,然后根据梯度方向更新参数,使得策略函数逐渐逼近最优策略。常见的策略梯度算法有 REINFORCE 算法、Actor-Critic 算法等。

2.2 PPO强化学习
PPO(Proximal Policy Optimization)是一种基于策略梯度的强化学习算法,由 OpenAI 提出。PPO 算法在传统的策略梯度算法的基础上进行了改进,通过引入剪切目标函数和重要性采样技术,提高了算法的稳定性和收敛速度。

6.png
7.png

2.3 训练过程
基于 PPO 强化学习的 Buck-Boost 电路控制系统的训练过程如下:

1.初始化 PPO 算法的参数,包括策略函数和价值函数的参数。

2.使用随机策略与 Buck-Boost 电路环境进行交互,收集经验数据。

3.根据收集到的经验数据,计算优势函数和奖励函数。

4.使用 PPO 算法更新策略函数和价值函数的参数。

5.重复步骤 2-4,直到算法收敛或达到预设的训练次数。

    在训练完成后,可以使用训练好的策略函数对 Buck-Boost 电路进行在线控制。根据当前的状态信息,策略函数输出一个最优的占空比D,控制开关管的导通和关断,实现对输出电压的稳定控制。

3.MATLAB核心程序

dfbf9f05ef9014faa346cb8f35de3949_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

相关文章
|
2天前
|
机器学习/深度学习 算法 机器人
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
116 85
|
1天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
2天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
1天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
248 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
147 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
117 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)