自学记录鸿蒙 API 13:实现人脸检测 Core Vision Face Detector

简介: 本文介绍了基于HarmonyOS Next API 13中的Core Vision Face Detector API实现人脸检测小应用的过程。通过研究发现,该API不仅支持人脸检测框的定位,还能识别关键点(如眼睛、鼻子和嘴角位置)及人脸姿态信息。文章详细记录了开发历程,包括项目初始化、权限配置、图像加载与人脸检测、用户界面设计,以及性能优化和功能扩展的思路。应用场景涵盖身份验证、照片管理和实时交互等。未来计划将技术应用于智能照片管理工具,提供更高效的照片分类体验。欢迎对人脸检测技术感兴趣的读者一起探讨和进步。

在完成了文本识别项目后,我决定继续挑战另一个视觉相关领域,于是我瞄上了API 13中的——人脸检测。通过研究HarmonyOS Next最新版本API 13中的Core Vision Face Detector API,我发现这项技术不仅支持人脸检测框的定位,还可以识别关键点(如眼睛、鼻子和嘴角位置)及人脸姿态信息。

确实,有点意思,这个玩意。

本文将记录我的学习历程和开发过程,重点展示如何利用Face Detector API实现一个人脸检测小应用。


开始我的开发之旅

在学习的过程中,我思考了人脸检测技术的实际应用场景,例如:

  • 身份验证:通过检测人脸和其特征点实现智能身份验证。
  • 照片管理:为相册中的照片添加人脸标注。
  • 实时交互:结合人脸位置与姿态实现增强现实(AR)效果。

在深入思考这些场景的同时,我也意识到技术本身的挑战性:如何提高检测的准确率和速度,如何处理多张人脸的复杂场景,以及如何优化性能以适应低功耗设备。


第一步:理解Core Vision Face Detector API的核心功能

核心功能介绍

Core Vision Face Detector API 提供了检测图片中人脸的能力,支持以下核心功能:

  • 人脸位置检测:返回所有检测到的人脸的矩形框位置。
  • 关键点识别:识别出眼睛、鼻子和嘴角的精确坐标。
  • 人脸姿态估计:获取人脸在三维空间中的角度,包括偏航(yaw)、俯仰(pitch)和横滚(roll)。
  • 检测排序:按照人脸框大小从大到小排序。

应用场景

  • 智能设备解锁:检测和识别人脸位置以触发设备解锁。
  • 照片优化:调整人脸照片的对比度、亮度或背景。
  • 虚拟试妆:结合人脸关键点和姿态实现化妆品试戴效果。
  • 安全监控:实时识别陌生人并发出警报。
  • 健康管理:通过人脸特征推断疲劳或健康状况。

第二步:项目初始化与配置

必要权限配置

在项目的config.json文件中,添加以下权限,确保应用可以读取图片和调用设备能力:

{
  "module": {
    "abilities": [
      {
        "name": "FaceDetectionAbility",
        "permissions": [
          "ohos.permission.INTERNET",
          "ohos.permission.READ_MEDIA",
          "ohos.permission.WRITE_MEDIA"
        ]
      }
    ]
  }
}

这一配置确保了应用能够访问本地文件并与网络通信,满足大多数场景需求。


第三步:实现人脸检测功能

初始化Face Detector服务

通过以下代码初始化Face Detector服务,并检查是否初始化成功:

import faceDetector from '@kit.CoreVisionKit';
async function initializeFaceDetector() {
    try {
        const isInitialized = await faceDetector.init();
        if (isInitialized) {
            console.info('人脸检测服务初始化成功');
        } else {
            console.error('人脸检测服务初始化失败');
        }
    } catch (error) {
        console.error('初始化过程中发生错误:', error);
    }
}
initializeFaceDetector();

初始化过程简单而高效,但仍需注意错误处理,特别是在设备资源有限的情况下。

图像加载与人脸检测

以下代码展示了如何从图库选择图片并调用Face Detector进行人脸检测:

async function detectFaces(imageUri: string) {
    try {
        const pixelMap = await loadPixelMap(imageUri); // 将图像加载为PixelMap
        const visionInfo = { pixelMap };
        const faces = await faceDetector.detect(visionInfo);
        if (faces.length > 0) {
            console.info(`检测到 ${faces.length} 张人脸`);
            faces.forEach((face, index) => {
                console.info(`人脸 ${index + 1} 的详细信息:`);
                console.info(`  置信度: ${face.probability}`);
                console.info(`  位置: (${face.rect.left}, ${face.rect.top}, 宽: ${face.rect.width}, 高: ${face.rect.height})`);
                console.info(`  姿态: pitch=${face.pose.pitch}, yaw=${face.pose.yaw}, roll=${face.pose.roll}`);
                face.points.forEach((point, i) => {
                    console.info(`  特征点 ${i + 1}: (${point.x}, ${point.y})`);
                });
            });
        } else {
            console.info('未检测到人脸');
        }
    } catch (error) {
        console.error('人脸检测失败:', error);
    }
}
async function loadPixelMap(imageUri: string) {
    // 假设有一个工具库实现图像加载
    return await someImageLibrary.loadPixelMap(imageUri);
}

我简单的整理了一下代码,图像加载可以参考我之前的文章。这样既适合初学者理解,也方便后续扩展功能。


第四步:构建用户界面

使用ArkUI设计用户界面

以下代码实现了一个简单的用户界面,支持图片选择和人脸检测结果展示:

import { View, Text, Button, Image } from '@ohos.arkui';
export default View.create({
    build() {
        return (
            {
                type: "flex",
                flexDirection: "column",
                children: [
                    {
                        type: Text,
                        content: "人脸检测应用",
                        style: { height: "50vp", fontSize: "20vp", textAlign: "center" },
                    },
                    {
                        type: Image,
                        src: this.imageUri || '',
                        style: { height: "200vp", width: "200vp", margin: "20vp" },
                    },
                    {
                        type: Button,
                        content: "选择图片",
                        style: { height: "50vp", marginTop: "20vp" },
                        onClick: this.onSelectImage,
                    },
                    {
                        type: Button,
                        content: "检测人脸",
                        style: { height: "50vp", marginTop: "10vp" },
                        onClick: this.onDetectFaces,
                    },
                ],
            }
        );
    },
    onSelectImage() {
        // 模拟图片选择
        this.imageUri = '/data/media/sample_image.jpg';
        console.info('图片已选择:', this.imageUri);
    },
    async onDetectFaces() {
        await detectFaces(this.imageUri);
    },
});

这一界面通过简洁的布局设计,再配合刚才的代码,让用户能够快速上手应用功能。


第五步:性能优化与功能扩展

性能优化

在项目开发过程中,我发现通过优化配置项可以显著提升性能。例如,当不需要检测关键点时,可以关闭该功能以减少处理时间。

const configuration = { detectKeyPoints: false };
const faces = await faceDetector.detect(visionInfo, configuration);

此外,在处理多张人脸或高分辨率图片时,可以利用设备的多核能力进行并行计算。

功能扩展

未来可以通过以下方式扩展功能:

  • 多线程优化:利用设备多核能力加速人脸检测过程。
  • 结果可视化:在图片上绘制人脸框和关键点信息。
  • 实时检测:结合相机模块实现视频流中的人脸检测。
  • 情绪分析:基于检测的人脸特征进一步推断情绪状态。
  • 动态交互:结合手势或语音控制增强用户体验。
  • 隐私保护:在检测过程中对敏感信息进行模糊化处理,确保用户隐私安全。

最后的小总结

啃完了HarmonyOS Next Core Vision Face Detector API 13,感觉非常舒服,体会到了鸿蒙生态在人工智能领域的技术优势。人脸检测的应用场景非常广泛,从智能设备交互到增强现实,它八成会改变我们的生活。

当然,我也有计划将这一技术应用到更多实际项目中,例如开发一款智能照片管理工具,为用户提供更高效、更便捷的照片分类体验。如果你也对人脸检测技术感兴趣,不妨从这些基础功能开始,逐步实现自己的创意!

当然如果你也在这一领域研究,不妨关注我,我们一起进步~!

目录
相关文章
|
3天前
|
API 数据安全/隐私保护 UED
探索鸿蒙的蓝牙A2DP与访问API:从学习到实现的开发之旅
在掌握了鸿蒙系统的开发基础后,我挑战了蓝牙功能的开发。通过Bluetooth A2DP和Access API,实现了蓝牙音频流传输、设备连接和权限管理。具体步骤包括:理解API作用、配置环境与权限、扫描并连接设备、实现音频流控制及动态切换设备。最终,我构建了一个简单的蓝牙音频播放器,具备设备扫描、连接、音频播放与停止、切换输出设备等功能。这次开发让我对蓝牙技术有了更深的理解,也为未来的复杂项目打下了坚实的基础。
85 58
探索鸿蒙的蓝牙A2DP与访问API:从学习到实现的开发之旅
|
2天前
|
安全 API 数据安全/隐私保护
自学记录HarmonyOS Next DRM API 13:构建安全的数字内容保护系统
在完成HarmonyOS Camera API开发后,我深入研究了数字版权管理(DRM)技术。最新DRM API 13提供了强大的工具,用于保护数字内容的安全传输和使用。通过学习该API的核心功能,如获取许可证、解密内容和管理权限,我实现了一个简单的数字视频保护系统。该系统包括初始化DRM模块、获取许可证、解密视频并播放。此外,我还配置了开发环境并实现了界面布局。未来,随着数字版权保护需求的增加,DRM技术将更加重要。如果你对这一领域感兴趣,欢迎一起探索和进步。
45 18
|
2天前
|
存储 API 计算机视觉
自学记录HarmonyOS Next Image API 13:图像处理与传输的开发实践
在完成数字版权管理(DRM)项目后,我决定挑战HarmonyOS Next的图像处理功能,学习Image API和SendableImage API。这两个API支持图像加载、编辑、存储及跨设备发送共享。我计划开发一个简单的图像编辑与发送工具,实现图像裁剪、缩放及跨设备共享功能。通过研究,我深刻体会到HarmonyOS的强大设计,未来这些功能可应用于照片编辑、媒体共享等场景。如果你对图像处理感兴趣,不妨一起探索更多高级特性,共同进步。
29 11
|
22小时前
|
人工智能 自然语言处理 文字识别
自学记录鸿蒙API 13:实现智能文本识别Core Vision Text Recognition
在完成语音助手项目后,我尝试了HarmonyOS Next API 13中的Core Vision Text Recognition API,体验其强大的文本识别功能。该API支持多语言高精度识别,能快速将图像中的文本提取为结构化信息,适用于文档扫描、票据管理和实时翻译等场景。通过权限配置、初始化服务、实现识别功能和构建用户界面,我完成了文本识别应用的开发,并探索了性能优化与功能扩展。鸿蒙生态的强大支持让开发者能更便捷地实现复杂功能。未来计划将此技术应用于实际项目,如票据管理或实时翻译工具。如果你也对文本识别感兴趣,不妨一起探索!
26 11
|
22小时前
|
人工智能 自然语言处理 API
自学记录HarmonyOS Next的HMS AI API 13:语音合成与语音识别
在完成图像处理项目后,我计划研究HarmonyOS Next API 13中的AI语音技术,包括HMS AI Text-to-Speech和Speech Recognizer。这些API提供了强大的语音合成与识别功能,支持多语言、自定义语速和音调。通过这些API,我将开发一个支持语音输入与输出的“语音助手”原型应用,实现从语音指令解析到语音响应的完整流程。此项目不仅提高了应用的交互性,也为开发者提供了广阔的创新空间。未来,语音技术将在无障碍应用和智慧城市等领域展现巨大潜力。如果你也对语音技术感兴趣,不妨一起探索这个充满无限可能的领域。 (238字符)
28 11
|
2月前
|
JSON API 数据格式
低代码实现鸿蒙API返回JSON转TS及快速生成ArkUI代码
低代码实现鸿蒙API返回JSON转TS及快速生成ArkUI代码
57 0
低代码实现鸿蒙API返回JSON转TS及快速生成ArkUI代码
|
3月前
|
存储 API 数据库
如何使用 ef core 的 code first(fluent api)模式实现自定义类型转换器?
本文介绍了如何在 EF Core 的 Code First 模式下使用自定义类型转换器实现 JsonDocument 和 DateTime 类型到 SQLite 数据库的正确映射。通过自定义 ValueConverter,实现了数据类型的转换,并展示了完整的项目结构和代码实现,包括实体类定义、DbContext 配置、Repositories 仓储模式及数据库应用迁移(Migrations)操作。
76 6
如何使用 ef core 的 code first(fluent api)模式实现自定义类型转换器?
|
3月前
|
开发框架 监控 前端开发
在 ASP.NET Core Web API 中使用操作筛选器统一处理通用操作
【9月更文挑战第27天】操作筛选器是ASP.NET Core MVC和Web API中的一种过滤器,可在操作方法执行前后运行代码,适用于日志记录、性能监控和验证等场景。通过实现`IActionFilter`接口的`OnActionExecuting`和`OnActionExecuted`方法,可以统一处理日志、验证及异常。创建并注册自定义筛选器类,能提升代码的可维护性和复用性。
|
4月前
|
UED 存储 自然语言处理
【语言无界·体验无疆】解锁Vaadin应用全球化秘籍:从代码到文化,让你的应用畅游世界每一个角落!
【8月更文挑战第31天】《国际化与本地化实战:构建多语言支持的Vaadin应用》详细介绍了如何使用Vaadin框架实现应用的国际化和本地化,提升用户体验和市场竞争力。文章涵盖资源文件的创建与管理、消息绑定与动态加载、日期和数字格式化及文化敏感性处理等方面,通过具体示例代码和最佳实践,帮助开发者构建适应不同语言和地区设置的Vaadin应用。通过这些步骤,您的应用将更加灵活,满足全球用户需求。
67 0
|
4月前
|
API 数据库 UED
全面解析构建高性能API的秘诀:运用Entity Framework Core与异步编程提升Web应用响应速度及并发处理能力的详细指南与实践案例
【8月更文挑战第31天】本文详细介绍了如何利用 Entity Framework Core (EF Core)的异步编程特性构建高性能 API。通过创建基于 EF Core 的 .NET Core Web API 项目,配置数据库上下文,并定义领域模型,文章展示了如何使用异步方法进行数据查询、加载相关实体及事务处理。具体代码示例涵盖了 GET、POST、PUT 和 DELETE 操作,全面展示了 EF Core 异步编程的优势,有助于提升 API 的响应速度和处理能力。
62 0