【MYSQL】 ——索引(B树B+树)、设计栈

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 索引的特点,使用场景,操作,底层结构,B树B+树,MYSQL设计栈

image.gif 编辑

阿华代码,不是逆风,就是我疯

你们的点赞收藏是我前进最大的动力!!

希望本文内容能够帮助到你!!

目录

一:索引的特点

二:索引适用的场景

三:MySQL中索引操作

1:查看索引

2:创建索引

3:删除索引

四:数据库的索引底层结构

1:B树

特点:

2:B+树

特点:

五:MYSQL设计栈

1:一对一

2:一对多

3:多对多

4:效率问题


前引:考虑有一本书。如何快速找到一个章节所在的位置,就需要一个目录。

在数据库中,进行条件查询的时候,我们经常需要遍历表,数据库是把数据存储在硬盘上,此处的时间复杂度O(N)比数据结构中的O(N)要慢很多,因此就可以给数据库引入索引,来提高查询的速度。

之前我们学习的MySQL中的parimary key 和 foreign key 和 unique 都会自动生成索引,这几个操作都会频繁涉及到查询

一:索引的特点

1:加快查询的速度

2:索引自身是一定的数据结构,也要占据存储空间

3:当我们需要进行(增删改)的时候,先根据条件查找(有索引的话就会比较快),之后的(增删改操作)也需要针对索引进行更新

4:一个表的索引可以有多个

例如字典的目录:可以根据汉字拼音首字母快速查询,也可以按照偏旁,笔画等进行查询

二:索引适用的场景

1:对于存储空间要求不高的(存储空间比较充裕)

2:应用场景中,查询较多,增删改操作不多的。(读多写少的场景在web中是很常见的)

三:MySQL中索引操作

1:查看索引

show index from 表名;

查看某个表是否有索引,以及有几个索引

image.gif 编辑 image.gif 编辑

2:创建索引

注:危险操作,如果表是空的或者数据比较少,创建索引没关系,如果表中数据量非常大,创建索引就会触发大量的硬盘IO,很容易把数据库搞挂了

create index 索引名 on 表名(列名)

代码:create index index_student_name on student (name);

image.gif 编辑

3:删除索引

drop index 索引名 on 表名

注:危险操作,在创建索引之初,我们就要设计规划好表的索引,但是在实际开发中,总会遇到需要添加索引的情况

解决方案:重新搞一台机器,搭建数据库,把生产环境数据库的数据表创建好,并且加上索引,把生产环境数据库的数据,导入到新的数据库中(导入过程非常耗时,但是并不影响生产环境正常工作),用新的数据库的这个机器,替代旧机器

四:数据库的索引底层结构

1:B树

B树又叫B-树(非念B减树,只是符号),B树是一个有序的N叉搜索树,每一个节点上可能有N个值,N个值划分出来N+1个区间

image.gif 编辑

特点:

①:同样高度的B树和二叉搜索树,前者能表示的元素个数更多

②:在搜索的时候B树的比较次数更多

③:虽然B树总的比较次数更多,但是B树的硬盘IO读取次数更少,成本更低(一次硬盘读取相当于内存1w次比较)

解释:同样多的元素个数下,B树存储元素所需要的节点数更少,而硬盘1次读取,是把节点中所有元素一次性读取出来,

2:B+树

在B树的基础上,做出了改进,B+树也是N叉搜索树,划分出来N个区间,根节点上的最后一个值为最大/小值

image.gif 编辑

特点:

(1):B+树一个节点中有N 个key,每个key划分出来N个区间,

(2):根节点中出现的值,在子树中会重复出现

重复出现的优点:

①无需回溯——例子:进行范围查询 id > 4 , id <=10 ,  根据4找到对应的位置,沿着链表在往后面进行查询就可以了,无需在对树进行回溯

②查询时间稳定——查询任何一个元素,都是要从根节点查询到叶子节点的,过程中IO硬盘读取的次数是一样的(稳定比快速更重要)

③存储数据便捷——根节点存储关键字key,叶子结点只需要存储数据即可(例子:如图)。

image.gif 编辑

补充:非叶子节点中存储的关键字key所占空间非常小,占空间大的数据都在叶子节点中,,这些数据都可以缓存到内存当中,正在查询的时候只需要比较内存当中的数据即可,大大减少了硬盘IO的比较次数,节约了成本。

3:每个节点中的最后一个key,是最大值或者最小值,

4:叶子节点之间用链式结构进行连接

五:MYSQL设计栈

谈及“数据库设计”,就是根据需求,来把需要的表给创建出来

1:先根据需求,找到实体

2:梳理清楚实体之间的关系,每个实体之间,需要理清楚关系,不同的关系下,有不同的设计表的方式。

三种关系来设计表

1:一对一

例如:教务系统

学生(实体):学号,班级,姓名,联系方式,入学时间.........

账户(描述这个实体):账户名,密码,注册时间,上次登录时间,登陆地点..........

方案一:搞一张大表,把这些信息全部放在一起

方案二:搞两张表。用id引用过来,建立联系

student(studentId ,studentName.......)

account(accountId,username,password.......,studentId)

2:一对多

例如:班级和学生(一个班级可以包含多个学生,一个学生只能从属一个班级)

image.gif 编辑

3:多对多

例如:学生和课程(一个学生可以选择多个课程,一个课程可以被多个学生选择)

image.gif 编辑

4:效率问题

在上一章节我们引入了约束这个概念,约束这些关键词有利也有弊,它们提高了数据正确性,但是影响数据库的执行效率(即牺牲了执行效率,但是换来了开发效率)

在开发中我们往往要考虑两部分

1:执行效率(机器硬件成本较低)

2:开发效率(优先,人力成本较高,更注重这个方面)

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
10天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
88 9
|
7天前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
33 8
|
12天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
44 5
|
4天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
18 3
|
4天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
21 3
|
4天前
|
SQL 关系型数据库 MySQL
数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog
《数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog》介绍了如何利用MySQL的二进制日志(Binlog)恢复误删除的数据。主要内容包括: 1. **启用二进制日志**:在`my.cnf`中配置`log-bin`并重启MySQL服务。 2. **查看二进制日志文件**:使用`SHOW VARIABLES LIKE &#39;log_%&#39;;`和`SHOW MASTER STATUS;`命令获取当前日志文件及位置。 3. **创建数据备份**:确保在恢复前已有备份,以防意外。 4. **导出二进制日志为SQL语句**:使用`mysqlbinlog`
27 2
|
17天前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
128 15
|
11天前
|
SQL 关系型数据库 MySQL
数据库数据恢复—Mysql数据库表记录丢失的数据恢复方案
Mysql数据库故障: Mysql数据库表记录丢失。 Mysql数据库故障表现: 1、Mysql数据库表中无任何数据或只有部分数据。 2、客户端无法查询到完整的信息。
|
18天前
|
关系型数据库 MySQL 数据库
数据库数据恢复—MYSQL数据库文件损坏的数据恢复案例
mysql数据库文件ibdata1、MYI、MYD损坏。 故障表现:1、数据库无法进行查询等操作;2、使用mysqlcheck和myisamchk无法修复数据库。
|
22天前
|
SQL 关系型数据库 MySQL
MySQL导入.sql文件后数据库乱码问题
本文分析了导入.sql文件后数据库备注出现乱码的原因,包括字符集不匹配、备注内容编码问题及MySQL版本或配置问题,并提供了详细的解决步骤,如检查和统一字符集设置、修改客户端连接方式、检查MySQL配置等,确保导入过程顺利。