SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: SPDL是Meta AI推出的开源高性能AI模型数据加载解决方案,基于多线程技术和异步事件循环,提供高吞吐量、低资源占用的数据加载功能,支持分布式系统和主流AI框架PyTorch。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 高性能数据加载:基于多线程技术,提升2-3倍吞吐量,减少GPU空闲时间。
  2. 低资源占用:用更少的计算资源,降低内存和CPU的使用。
  3. 框架无关性:兼容主流AI框架PyTorch,支持分布式系统。

正文

SPDL 是什么

公众号: 蚝油菜花 - spdl

SPDL(Scalable and Performant Data Loading)是Meta AI推出的开源数据加载工具,旨在提高AI模型训练的效率。它基于多线程技术,实现了高吞吐量的数据加载,减少了计算资源的消耗。与传统的基于进程的方法相比,SPDL能够提升2-3倍的吞吐量,并且与Free-Threaded Python兼容,在禁用GIL的环境中进一步提升30%的性能。

SPDL通过异步事件循环和线程安全操作优化数据加载,支持分布式系统和主流AI框架PyTorch,适用于大规模数据集和复杂任务。

SPDL 的主要功能

  • 高吞吐量数据加载:基于多线程技术,满足GPU高速计算的需求,减少GPU空闲时间。
  • 资源占用低:用更少的计算资源,降低内存和CPU的使用。
  • 框架无关性:作为框架无关的数据加载解决方案,SPDL与不同的AI框架配合使用,包括PyTorch。
  • 兼容性:SPDL兼容Free-Threaded Python,能在禁用GIL的环境中进一步提升性能。
  • 性能监控与调优:提供工具帮助用户深入了解数据加载过程,进行性能优化。
  • 分布式系统支持:SPDL支持在分布式系统中工作,单GPU和大型集群,都能高效处理复杂任务。
  • 预取和缓存技术:基于预取和缓存技术,确保GPU始终有数据可供处理,减少GPU空闲时间。

SPDL 的技术原理

  • 基于线程的并行性:基于线程的并行处理,减少进程间通信的开销,提高数据传输速度。
  • 异步事件循环:SPDL的核心是异步事件循环,负责调度新任务和响应任务完成,实现真正的并发执行。
  • 线程安全和GIL释放:SPDL中的媒体处理操作是线程安全的,在执行时释放GIL(Python的全局解释器锁),支持真正的并行执行。
  • 流水线抽象:SPDL包含任务执行器,提供流水线抽象,用户能构建复杂的数据处理流水线。
  • 灵活的并发调整:用户根据数据加载的不同阶段(如数据获取、预处理、传输)分别调整并发策略,优化整体性能。
  • 高效的媒体处理:实现从零开始的媒体解码功能,确保在性能关键的代码中是线程安全的,且释放GIL。
  • 异步I/O操作:用网络存储中提供的异步API,执行异步I/O操作,提高性能,不受GIL的限制。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
Baichuan-M1-14B:AI 助力医疗推理,为患者提供专业的建议!百川智能开源业内首个医疗增强大模型,普及医学的新渠道!
Baichuan-M1-14B 是百川智能推出的首个开源医疗增强大模型,专为医疗场景优化,支持多语言、快速推理,具备强大的医疗推理能力和通用能力。
73 16
Baichuan-M1-14B:AI 助力医疗推理,为患者提供专业的建议!百川智能开源业内首个医疗增强大模型,普及医学的新渠道!
|
8天前
|
存储 人工智能 自然语言处理
OmniThink:浙大联合阿里通义开源 AI 写作框架,基于深度思考扩展知识边界,实时展示思考过程
OmniThink 是浙江大学与阿里通义实验室联合开发的机器写作框架,通过模拟人类迭代扩展和反思过程,生成高质量长篇文章,显著提升知识密度和内容深度。
110 12
OmniThink:浙大联合阿里通义开源 AI 写作框架,基于深度思考扩展知识边界,实时展示思考过程
|
7天前
|
人工智能 测试技术 Python
VideoChat-Flash:上海AI Lab开源高效处理超长视频的多模态大模型
VideoChat-Flash 是上海人工智能实验室等机构推出的多模态大模型,通过分层压缩技术高效处理长视频,支持长达数小时的视频输入,推理速度提升5-10倍。
38 1
VideoChat-Flash:上海AI Lab开源高效处理超长视频的多模态大模型
|
5天前
|
人工智能 自然语言处理 JavaScript
微软开源课程!21节课程教你开发生成式 AI 应用所需了解的一切
微软推出的生成式 AI 入门课程,涵盖 21 节课程,帮助开发者快速掌握生成式 AI 应用开发,支持 Python 和 TypeScript 代码示例。
106 14
|
8天前
|
人工智能 Serverless
AI剧本生成与动画创作解决方案评测:一键式动画制作的革命
AI剧本生成与动画创作解决方案评测:一键式动画制作的革命
74 17
|
3天前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
35 9
|
8天前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
42 13
|
8天前
|
人工智能
解决方案 | 主动式智能导购AI助手构建获奖名单公布!
解决方案 | 主动式智能导购AI助手构建获奖名单公布!
|
3天前
|
机器学习/深度学习 搜索推荐 PyTorch
基于昇腾用PyTorch实现传统CTR模型WideDeep网络
本文介绍了如何在昇腾平台上使用PyTorch实现经典的WideDeep网络模型,以处理推荐系统中的点击率(CTR)预测问题。
148 65
|
3月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
556 2

热门文章

最新文章