🙋魔搭ModelScope本期社区进展:
📟1338个模型:HunyuanVideo、InternVL2.5系列、TeleChat2系列、AWPortraitCN、fish-speech-1.5、Mistral-Nemo-Instruct-2407-FP等;
📁82个数据集:OpenO1-SFT、LLaVA-CoT-o1-Instruct、LLaVA-CoT-100k等;
🎨26个创新应用:OminiControl、Hallo、HunyuanVideo等;
📄 8篇内容:
- NexaAI, 一行命令运行魔搭社区模型,首次在设备上运行 Qwen2-Audio
- 魔搭AIGC12月赛题公布&11月获奖作品出炉
- 开发者福利,魔搭推出免费模型推理API,注册就送每日2000次调用!
- 2024 “AI+硬件创新大赛”获奖名单出炉,浙大、上交与复旦联队等夺冠
- 腾讯开源混元视频生成模型,这效果!太稳了吧!
- 金融行业 · 大模型挑战赛 |用大模型理解金融市场
- 智源研究院发布中文高质量数据集CCI3.0-HQ技术报告
- 用 OpenVINO™ 部署 GLM-Edge 全家桶
01.精选模型
HunyuanVideo
HunyuanVideo是腾讯开源的一个具有超过130亿参数的先进开源视频生成模型,它通过集成数据管理、图像-视频联合训练和高效基础设施的综合框架,以及有效的模型架构和数据集扩展策略,实现了高视觉质量、运动多样性、文本-视频对齐和生成稳定性。
模型链接:
https://modelscope.cn/models/AI-ModelScope/HunyuanVideo
代码示例:
InternVL2.5系列
InternVL 2.5是上海人工智能实验室开源的一个先进的多模态大型语言模型(MLLM)系列,基于InternVL 2.0的核心模型架构,在训练、测试策略以及数据质量方面作显著增强,通过对包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉锚定、多语言能力和纯语言处理等广泛基准的深入评估,是第一个在MMMU基准上超过70%的开源MLLM。
模型链接:
- InternVL2_5-1B/summary:
https://www.modelscope.cn/models/OpenGVLab/InternVL2_5-1B/summary
- InternVL2_5-2B:
https://www.modelscope.cn/models/OpenGVLab/InternVL2_5-2B
- InternVL2_5-4B:
https://www.modelscope.cn/models/OpenGVLab/InternVL2_5-4B
- InternVL2_5-8B:
https://www.modelscope.cn/models/OpenGVLab/InternVL2_5-8B
- InternVL2_5-26B:
https://www.modelscope.cn/models/OpenGVLab/InternVL2_5-26B
- InternVL2_5-38B:
https://www.modelscope.cn/models/OpenGVLab/InternVL2_5-38B
- InternVL2_5-78B:
https://www.modelscope.cn/models/OpenGVLab/InternVL2_5-78B
代码示例:
transformers推理代码(以InternVL2_5-4B推理为例):
import numpy as np import torch import torchvision.transforms as T from decord import VideoReader, cpu from PIL import Image from torchvision.transforms.functional import InterpolationMode from modelscope import AutoModel, AutoTokenizer IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section. path = 'OpenGVLab/InternVL2_5-4B' model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, use_flash_attn=True, trust_remote_code=True).eval().cuda() tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) # set the max number of tiles in `max_num` pixel_values = load_image('./awesome.png', max_num=12).to(torch.bfloat16).cuda() generation_config = dict(max_new_tokens=1024, do_sample=True) # pure-text conversation (纯文本对话) question = 'Hello, who are you?' response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'Can you tell me a story?' response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # single-image single-round conversation (单图单轮对话) question = '<image>\nPlease describe the image shortly.' response = model.chat(tokenizer, pixel_values, question, generation_config) print(f'User: {question}\nAssistant: {response}') # single-image multi-round conversation (单图多轮对话) question = '<image>\nPlease describe the image in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'Please write a poem according to the image.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像) pixel_values1 = load_image('./awesome.png', max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image('./noword.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) question = '<image>\nDescribe the two images in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'What are the similarities and differences between these two images.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # multi-image multi-round conversation, separate images (多图多轮对话,独立图像) pixel_values1 = load_image('./awesome.png', max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image('./noword.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)] question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'What are the similarities and differences between these two images.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # batch inference, single image per sample (单图批处理) pixel_values1 = load_image('./awesome.png', max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image('./noword.jpg', max_num=12).to(torch.bfloat16).cuda() num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)] pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list) responses = model.batch_chat(tokenizer, pixel_values, num_patches_list=num_patches_list, questions=questions, generation_config=generation_config) for question, response in zip(questions, responses): print(f'User: {question}\nAssistant: {response}') # video multi-round conversation (视频多轮对话) def get_index(bound, fps, max_frame, first_idx=0, num_segments=32): if bound: start, end = bound[0], bound[1] else: start, end = -100000, 100000 start_idx = max(first_idx, round(start * fps)) end_idx = min(round(end * fps), max_frame) seg_size = float(end_idx - start_idx) / num_segments frame_indices = np.array([ int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments) ]) return frame_indices def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32): vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) max_frame = len(vr) - 1 fps = float(vr.get_avg_fps()) pixel_values_list, num_patches_list = [], [] transform = build_transform(input_size=input_size) frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) for frame_index in frame_indices: img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB') img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(tile) for tile in img] pixel_values = torch.stack(pixel_values) num_patches_list.append(pixel_values.shape[0]) pixel_values_list.append(pixel_values) pixel_values = torch.cat(pixel_values_list) return pixel_values, num_patches_list video_path = './showcase.mp4' pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1) pixel_values = pixel_values.to(torch.bfloat16).cuda() video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))]) question = video_prefix + 'What is the red panda doing?' # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question} response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'Describe this video in detail. Don\'t repeat.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}')
TeleChat2
星辰语义大模型TeleChat2是由中国电信人工智能研究院研发训练的大语言模型。
TeleChat2系列模型包括TeleChat2-3B、TeleChat2-7B、TeleChat2-35B和TeleChat2-115B,具备显著的工具调用功能和优化的Function Call表现,相较同尺寸模型在多个榜单中表现优异。
该系列在训练数据和方法方面进行了全面改进,通用问答及逻辑推理等能力较前代提升超过29%。所有模型均在国产算力和深度学习框架上训练,保障了自主可控性。通过优化MP、PP、SP实现和长文训练技术,提升了模型性能和训练速度。
模型链接:
- telechat2-3B
https://modelscope.cn/models/TeleAI/TeleChat2-3B
- telechat2-7B
https://modelscope.cn/models/TeleAI/TeleChat2-7B
- telechat2-35B
https://modelscope.cn/models/TeleAI/TeleChat2-35B-Nov
- telechat2-115B
https://modelscope.cn/models/TeleAI/TeleChat2-115B
代码示例:
当前模型推理兼容了单卡和多卡推理,以及针对长文推理做了部分优化工作,模型推理方法示范:
import os import torch from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig tokenizer = AutoTokenizer.from_pretrained('TeleAI/TeleChat2-3B', trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained('TeleAI/TeleChat2-3B', trust_remote_code=True, device_map="auto", torch_dtype=torch.float16) prompt = "生抽与老抽的区别?" messages = [{"role": "user", "content": prompt}] text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ]
AWPortraitCN
AWPortraitCN 是基于FLUX.1-dev开发。它在训练时使用了更符合中国人外貌和审美特征的图像。它包含了多种类型的肖像,如室内和室外肖像、时尚和影棚照片。它具有很强的泛化能力。与原始版本相比,AWPortraitCN在皮肤质感上更加细腻真实。为了追求更真实的原始图像效果,它可以与AWPortraitSR工作流程一起使用。
模型链接:
https://modelscope.cn/models/LiblibAI/AWPortraitCN
效果展示:
02.数据集推荐
DAVIS-Edit
数据集专为通过SFT微调语言模型以激活思维链而设计,目的是提升模型在复杂推理任务上生成连贯、逻辑性强的推理序列的能力。
数据集链接:
https://modelscope.cn/datasets/AI-ModelScope/OpenO1-SFT
LLaVA-CoT-o1-Instruct
LLaVA-CoT-o1-Instruct是用于支持和提升语言模型在复杂任务中的逻辑推理和连贯性表现。
数据集链接:
https://modelscope.cn/datasets/AI-ModelScope/LLaVA-CoT-o1-Instruct
LLaVA-CoT-100k
LLaVA-CoT-100k是一个专注于复杂推理任务的数据集,包含100,000个样本。这个数据集被设计用来训练和测试语言模型,以提高它们在逻辑推理和问题解决方面的能力。
数据集链接:
https://modelscope.cn/datasets/AI-ModelScope/LLaVA-CoT-100k
03.精选应用
OminiControl
是一款内容生成工具,支持上传一张有主体的图片+一段文本关键词进行合成。具有广泛的应用前景。
体验直达:
https://modelscope.cn/studios/AI-ModelScope/OminiControl
Hallo
TTS x Hallo Talking Portrait Generator是一个集成多个开源项目的演示工具,允许用户生成会说话的肖像视频,但视频长度限制为4秒音频以内。
体验直达:
https://modelscope.cn/studios/AI-ModelScope/Hallo
HunyuanVideo
HunyuanVideo是一个创新的视频生成工具,它通过引入Transformer架构和Full Attention机制,实现了图像和视频的统一生成。该工具采用“Dual-stream to Single-stream”混合模型设计,首先独立处理视频和文本token,确保每个模态都能学习到适合自己的调制机制,然后在Single-stream阶段将视频和文本token融合,实现多模态信息的有效整合,捕捉视觉和语义信息之间的复杂交互,从而显著提升模型的整体性能。
体验直达:
https://modelscope.cn/studios/chuanSir/HunyuanVideo
04.社区精选文章
- NexaAI, 一行命令运行魔搭社区模型,首次在设备上运行 Qwen2-Audio
- 魔搭AIGC12月赛题公布&11月获奖作品出炉
- 开发者福利,魔搭推出免费模型推理API,注册就送每日2000次调用!
- 2024 “AI+硬件创新大赛”获奖名单出炉,浙大、上交与复旦联队等夺冠
- 腾讯开源混元视频生成模型,这效果!太稳了吧!
- 金融行业 · 大模型挑战赛 |用大模型理解金融市场
- 智源研究院发布中文高质量数据集CCI3.0-HQ技术报告
- 用 OpenVINO™ 部署 GLM-Edge 全家桶