Fish Speech 1.5:Fish Audio 推出的零样本语音合成模型,支持13种语言

简介: Fish Speech 1.5 是由 Fish Audio 推出的先进文本到语音(TTS)模型,支持13种语言,具备零样本和少样本语音合成能力,语音克隆延迟时间不到150毫秒。该模型基于深度学习技术如Transformer、VITS、VQVAE和GPT,具有高度准确性和快速合成能力,适用于多种应用场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 多语言支持:支持13种语言,包括英语、日语、韩语和中文。
  2. 零样本和少样本语音合成:基于10到30秒的声音样本生成高质量语音。
  3. 无音素依赖:不依赖音素,具有更强的泛化能力。

正文(附运行示例)

Fish Speech 1.5 是什么

公众号: 蚝油菜花 - fish-speech

Fish Speech 1.5 是 Fish Audio 推出的文本到语音(TTS)模型,基于深度学习技术如Transformer、VITS、VQVAE和GPT等。该模型支持英语、日语、韩语、中文等13种语言,具备零样本和少样本语音合成能力,只需10到30秒的声音样本即可模仿高质量语音。

Fish Speech 1.5 的语音克隆功能延迟时间不到150毫秒,模型泛化能力强,无需依赖音素,能处理任何语言脚本。即将推出的实时无缝对话功能,用户能随时随地进行交互式聊天。Fish Speech 1.5 开源预训练模型,支持本地部署,适用于Linux、Windows和macOS系统。

Fish Speech 1.5 的主要功能

  • 多语言支持:支持包括英语、日语、韩语、中文在内的13种语言,能处理多种语言的文本。
  • 零样本和少样本语音合成:基于极短的声音样本(10到30秒)模仿并生成高质量的语音合成输出。
  • 无音素依赖:与传统语音合成模型不同,Fish Speech 1.5不依赖音素,具有更强的泛化能力。
  • 高度准确:对于一篇5分钟的英文文章,错误率低至2%。
  • 快速合成:在高性能硬件上,能实现快速的实时语音合成。

Fish Speech 1.5 的技术原理

  • Transformer架构:一种基于自注意力机制的模型,能处理序列数据,被广泛应用于语言处理任务中。
  • VITS(Vector Quantized Transformer-based Speech Synthesis):一种基于Transformer的语音合成模型,基于量化技术提高合成效率和质量。
  • VQVAE(Vector Quantized Variational Autoencoder):一种变分自编码器,基于量化技术学习数据的压缩表示。
  • GPT(Generative Pre-trained Transformer):一种预训练语言模型,基于大量文本数据训练,生成连贯和自然的文本。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
Voice-Pro:开源AI音频处理工具,集成转录、翻译、TTS等一站式服务
Voice-Pro是一款开源的多功能音频处理工具,集成了语音转文字、文本转语音、实时翻译、YouTube视频下载和人声分离等多种功能。它支持超过100种语言,适用于教育、娱乐和商业等多个领域,为用户提供一站式的音频处理解决方案,极大地提高工作效率和音频处理的便捷性。
64 10
Voice-Pro:开源AI音频处理工具,集成转录、翻译、TTS等一站式服务
|
10天前
|
机器学习/深度学习 人工智能
Qwen2VL-Flux:开源的多模态图像生成模型,支持多种生成模式
Qwen2VL-Flux 是一个开源的多模态图像生成模型,结合了 Qwen2VL 的视觉语言理解和 FLUX 框架,能够基于文本提示和图像参考生成高质量的图像。该模型支持多种生成模式,包括变体生成、图像到图像转换、智能修复及 ControlNet 引导生成,具备深度估计和线条检测功能,提供灵活的注意力机制和高分辨率输出,是一站式的图像生成解决方案。
76 4
Qwen2VL-Flux:开源的多模态图像生成模型,支持多种生成模式
|
4月前
|
机器学习/深度学习 IDE 开发工具
ARTIST的中文文图生成模型问题之什么是PAI-DSW
ARTIST的中文文图生成模型问题之什么是PAI-DSW
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)
【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)
60 1
【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)
|
4月前
|
人工智能 分布式计算 算法
3D-Speaker多模态说话人问题之3D-Speaker的开源代码和数据集如何获取
3D-Speaker多模态说话人问题之3D-Speaker的开源代码和数据集如何获取
|
4月前
|
人工智能 语音技术 Windows
语音识别教程:Whisper
本文是一份详细的Whisper语音识别模型使用教程,包括了FFmpeg的安装、Whisper模型的安装与使用,以及如何实现实时录制音频并转录的步骤和代码示例,旨在帮助用户基于Whisper和GPT创建AI字幕。
|
4月前
|
机器学习/深度学习 人机交互 API
【机器学习】Whisper:开源语音转文本(speech-to-text)大模型实战
【机器学习】Whisper:开源语音转文本(speech-to-text)大模型实战
264 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】ChatTTS:开源文本转语音(text-to-speech)大模型天花板
【机器学习】ChatTTS:开源文本转语音(text-to-speech)大模型天花板
167 0
|
4月前
|
机器学习/深度学习 编解码 API
【机器学习】FFmpeg+Whisper:二阶段法视频理解(video-to-text)大模型实战
【机器学习】FFmpeg+Whisper:二阶段法视频理解(video-to-text)大模型实战
60 0
|
4月前
|
机器学习/深度学习 人工智能 数据挖掘
【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)
【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)
101 0

热门文章

最新文章