智源研究院发布中文高质量数据集CCI3.0-HQ技术报告

简介: 智源研究院发布了CCI3.0-HQ中文预训练数据集,采用先进的混合质量过滤方法,显著提升数据完整性和性能。该数据集在多项实验中表现优异,超越了其他主流中文语料库。同时,智源还推出了CCI3-HQ分类器,大幅改进了大语言模型训练中的数据选择流程。

01.摘要

近年来,自然语言基础模型(LLM)取得了显著进展,训练数据的规模扩展以及数据质量的提升是提升模型性能的关键因素。目前英文开源语料的质量过滤已经从基础的规则方法转向了模型驱动的方法。然而,中文开源语料相对稀缺,同时针对中文网络数据进行质量分类提升的研究较少,导致数据质量尚未达到理想水平,进而影响模型中文性能。

为解决以上问题,进一步缓解中文预训练语料规模和质量上的差距,2024年9月20日,智源研究院发布并开源了中文预训练数据集CCI3.0和高质量子集CCI3.0-HQ。2024年10月25日,智源研究院发布中文高质量预训练数据集CCI3.0-HQ技术报告,全面解析数据集的构建过程。

主要贡献总结如下:

  • 发布CCI3.0-HQ,这是一个突破性的500GB中文预训练数据集,采用了先进的混合质量过滤方法,显著提升了数据完整性。
  • 进行严格的实验评估,结果表明CCI3.0-HQ在性能上显著优于原版CCI3.0数据集和其他主流开源中文语料库,从而建立了新的性能基准。
  • 推出并开源CCI3-HQ分类器,这是一种先进的质量分类工具,大幅改进大语言模型训练中的数据选择流程。

数据集下载地址:

质量分类器下载地址:

https://www.modelscope.cn/models/BAAI/CCI3-HQ-Classifier

技术报告地址:

https://arxiv.org/abs/2410.18505

02.CCI3.0-HQ 构建

添加图片注释,不超过 140 字(可选)

图1. CCI3.0-HQ数据集构建流程概述

如图1所示,数据处理流程包括两个主要阶段:基础处理和高质量处理。原始数据涵盖了丰富的中文语料来源,包括新闻、社交媒体和博客,从而增强了数据集的覆盖面和代表性。经过基础处理,获得CCI3.0数据集。接着通过基于模型的高质量处理进一步优化,最终得到CCI3.0-HQ数据集。CCI3.0-HQ数据集的关键是高质量处理阶段,具体由高质量样本自动标注和高质量分类器训练两个主要步骤组成。

2.1 高质量样本自动标注

高质量处理的主要关注点是在预训练的背景下精确定义“高质量”。在探索和比较了2种领先方法后,采用了FineWeb-edu方法来定义高质量样本,专注于筛选中文的高质量教育内容,以提升中文语料的整体质量。在质量标准确定后,接下来的挑战是高效地构建数大量符合标准的样本。为此,使用本地部署的大尺寸开源模型对CCI3.0数据集中随机抽取的145,000个网页样本进行评分,评分范围为0(非教育性)到5(高度教育性)。最后,对部分标注结果进行了人工和GPT-4评估,达到了超过80%的一致率。

2.2 高质量分类器训练

通过上面的自动化流程累计了数十万个标注样本,随后训练了一个较小的质量分类模型以实现大规模高效标注。该方法在确保正确识别高质量样本的同时显著降低了成本,从而以实用的资源投入完成数据集的全面标注。质量分类模型由BGE-M3模型和扩展分类头组成。基于模型调优实验,训练期间,嵌入层和编码器层保持冻结,以专注于分类头的优化。最后,将模型转换为二元分类器,使用评分阈值为3,并将该分类器应用于约15亿样本,该过程耗费9700小时的A100 GPU算力。

03.CCI3.0-HQ 实验

3.1模型预训练实验

使用相同的模型架构并且数据集总量100B进行从头预训练,主要设计了两项主要实验来评估不同数据集性能:

  • 混合数据集实验:该数据集包括60%的英文、10%的代码和30%的中文内容。在英文部分,使用了FineWeb-edu数据集;代码数据则来自StarCoder。
  • 中文数据集实验:该实验使用了100%中文内容的数据集,对比目前开源规模较大的数据集比如Wanjuan-v1、SkyPile、CCI3.0和CCI3.0-HQ数据集。
  • 实验结果如表1所示:在混合数据集实验和中文数据集实验中,CCI3.0-HQ数据集在大多数指标上表现优异,显著超过了其他数据集。与CCI3.0数据集相比的显著提升也证明了对中文预训练语料进行高质量过滤的重要性。另外如图2所示,在模型训练过程进行阶段评测,CCI3.0-HQ数据集表现稳定胜出。

添加图片注释,不超过 140 字(可选)

表1. 混合数据集实验和中文数据集实验中数据集对模型性能的影响对比

添加图片注释,不超过 140 字(可选)


图2. 训练过程中不同数据集对模型性能的影响对比

3.2 质量分类器实验

如表2结果所示,与现有开源的分类器相比,自主训练的CCI3.0-HQ-Classifier在处理多样化数据和区分高质量内容方面表现出显著提升。这一结果突显了合理质量过滤在预训练中的关键作用,也是CCI3.0-HQ数据集相较于原始CCI3.0数据集性能更优的关键因素。

添加图片注释,不超过 140 字(可选)

表2.不同质量分类器的评估

04.总结&未来工作


在本工作中,智源研究院发布并开源CCI3.0-HQ数据集,该数据集采用了复杂的混合质量过滤方法,以提升数据的完整性。通过从头开始训练小规模模型的对比实验和严格的实验评估,CCI3.0-HQ显著优于现有知名的中文开源数据集。同时,智源还推出并开源了CCI3-HQ分类器,与现有的中英文开源质量分类器相比,其表现更为优越。CCI3.0-HQ数据集也充分展示了高质量过滤在中文大语言模型预训练中的重要性。

之后研究团队还会从以下几方面对工作进行改进:

1、进一步完善数据质量分类,增加质量数据的多样性和复杂性。

2、进一步增加中文高质量预训练语料的规模。


目录
相关文章
|
机器学习/深度学习 关系型数据库 MySQL
大模型中常用的注意力机制GQA详解以及Pytorch代码实现
GQA是一种结合MQA和MHA优点的注意力机制,旨在保持MQA的速度并提供MHA的精度。它将查询头分成组,每组共享键和值。通过Pytorch和einops库,可以简洁实现这一概念。GQA在保持高效性的同时接近MHA的性能,是高负载系统优化的有力工具。相关论文和非官方Pytorch实现可进一步探究。
1773 4
|
1月前
|
人工智能 物联网 测试技术
Qwen-Image-Edit:全能图像编辑,驱动内容创作提质增效
通义千问团队开源Qwen-Image-Edit,基于20B模型,支持语义与外观双重编辑、精准中英文文字修改,具备SOTA图像编辑能力,可用于IP创作、风格迁移、文字修复等。
801 6
|
人工智能 自然语言处理 搜索推荐
智源研究院开源中文互联网语料库CCI3.0,1000GB数据集,498GB高质量子集,魔搭社区可下载
近日,智源研究院正式发布中文互联网语料库CCI 3.0(Chinese Corpora Internet,简称 CCI)
|
数据采集 自然语言处理 文字识别
92页的llama 3.1技术报告,我替你们啃下来了
作者花了半个月时间,认真读完了llama 3.1技术报告,并总结成本文,希望能帮到对这个感兴趣的小伙伴们。
1727 9
92页的llama 3.1技术报告,我替你们啃下来了
|
10月前
|
机器学习/深度学习 人工智能 JSON
知识蒸馏方法探究:Google Distilling Step-by-Step 论文深度分析
大型语言模型(LLM)的发展迅速,从简单对话系统进化到能执行复杂任务的先进模型。然而,这些模型的规模和计算需求呈指数级增长,给学术界和工业界带来了挑战。为解决这一问题,知识蒸馏技术应运而生,旨在将大型模型的知识转移给更小、更易管理的学生模型。Google Research 提出的“Distilling Step-by-Step”方法不仅减小了模型规模,还通过提取推理过程使学生模型在某些任务上超越教师模型。该方法通过多任务学习框架,训练学生模型同时预测标签和生成推理过程,从而实现更高效、更智能的小型化模型。这为资源有限的研究者和开发者提供了新的解决方案,推动了AI技术的普及与应用。
559 19
知识蒸馏方法探究:Google Distilling Step-by-Step 论文深度分析
|
人工智能 边缘计算 自然语言处理
DistilQwen2:通义千问大模型的知识蒸馏实践
DistilQwen2 是基于 Qwen2大模型,通过知识蒸馏进行指令遵循效果增强的、参数较小的语言模型。本文将介绍DistilQwen2 的技术原理、效果评测,以及DistilQwen2 在阿里云人工智能平台 PAI 上的使用方法,和在各开源社区的下载使用教程。
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
281 2
|
编解码 开发者 Python
【Python】已解决:UnicodeEncodeError: ‘gbk’ codec can’t encode character ‘\u0157’ in position 1: illegal m
【Python】已解决:UnicodeEncodeError: ‘gbk’ codec can’t encode character ‘\u0157’ in position 1: illegal m
1157 1
|
存储 机器学习/深度学习 人工智能
深入浅出 AI 智能体(AI Agent)|技术干货
随着人工智能技术的发展,智能体(AI Agents)逐渐成为人与大模型交互的主要方式。智能体能执行任务、解决问题,并提供个性化服务。其关键组成部分包括规划、记忆和工具使用,使交互更加高效、自然。智能体的应用涵盖专业领域问答、资讯整理、角色扮演等场景,极大地提升了用户体验与工作效率。借助智能体开发平台,用户可以轻松打造定制化AI应用,推动AI技术在各领域的广泛应用与深度融合。
31729 1
|
缓存 算法 安全
被追着问UUID和自增ID做主键哪个好,为什么?
讨论了UUID和自增ID作为数据库主键的优缺点。UUID全局唯一,适合分布式系统,但存储空间大,不适合范围查询。自增ID存储空间节省,查询效率高,但分库分表困难,可预测性高。UUID版本包括基于时间戳(V1)、随机数(V4)以及基于名称空间的MD5(V3)和SHA1(V5)散列。
1281 1
被追着问UUID和自增ID做主键哪个好,为什么?