Pandas 相关性分析

简介: Pandas 相关性分析

在 Pandas 中,数据相关性分析是通过计算不同变量之间的相关系数来了解它们之间的关系。

在 Pandas 中,数据相关性是一项重要的分析任务,它帮助我们理解数据中各个变量之间的关系。

Pandas 使用 corr() 方法计算数据集中每列之间的关系。

df.corr(method='pearson', min_periods=1)

  • method (可选): 字符串类型,用于指定计算相关系数的方法。默认是 'pearson',还可以选择 'kendall'(Kendall Tau 相关系数)或 'spearman'(Spearman 秩相关系数)。
  • min_periods (可选): 表示计算相关系数时所需的最小观测值数量。默认值是 1,即只要有至少一个非空值,就会进行计算。如果指定了 min_periods,并且在某些列中的非空值数量小于该值,则相应列的相关系数将被设为 NaN。

df.corr() 方法返回一个相关系数矩阵,矩阵的行和列对应数据框的列名,矩阵的元素是对应列之间的相关系数。

常见的相关性系数包括 Pearson 相关系数和 Spearman 秩相关系数:

  • Pearson 相关系数: 即皮尔逊相关系数,用于衡量了两个变量之间的线性关系强度和方向。它的取值范围在 -1 到 1 之间,其中 -1 表示完全负相关,1 表示完全正相关,0 表示无线性相关。可以使用 corr() 方法计算数据框中各列之间的 Pearson 相关系数。
  • Spearman 相关系数:即斯皮尔曼相关系数,是一种秩相关系数。用于衡量两个变量之间的单调关系,即不一定是线性关系。它通过比较变量的秩次来计算相关性。可以使用 corr(method='spearman') 方法计算数据框中各列之间的 Spearman 相关系数。

Pearson 相关系数

实例

import pandas as pd


# 创建一个示例数据框

data = {'A': [1, 2, 3, 4, 5], 'B': [5, 4, 3, 2, 1]}

df = pd.DataFrame(data)


# 计算 Pearson 相关系数

correlation_matrix = df.corr()

print(correlation_matrix)

输出结果:

    A    B

A  1.0 -1.0

B -1.0  1.0

说明:由于数据集是线性相关的,因此 Pearson 相关系数矩阵对角线上的值为 1,而非对角线上的值为 -1 表示完全负相关。

Spearman 秩相关系数

实例

import pandas as pd


# 创建一个示例数据框

data = {'A': [1, 2, 3, 4, 5], 'B': [5, 4, 3, 2, 1]}

df = pd.DataFrame(data)


# 计算 Spearman 相关系数

spearman_correlation_matrix = df.corr(method='spearman')

print(spearman_correlation_matrix)

输出结果:

    A    B

A  1.0 -1.0

B -1.0  1.0

说明:Spearman 相关系数矩阵的结果与 Pearson 相关系数矩阵相同,因为这两个变量之间是完全的单调负相关。

可视化相关性

这里我们要使用 Python 的 Seaborn 库, Seaborn 是一个基于 Matplotlib 的数据可视化库,专注于统计图形的绘制,旨在简化数据可视化的过程。

Seaborn 提供了一些简单的高级接口,可以轻松地绘制各种统计图形,包括散点图、折线图、柱状图、热图等,而且具有良好的美学效果。

安装 Seaborn:

pip install seaborn

实例

import seaborn as sns

import matplotlib.pyplot as plt

import pandas as pd


# 创建一个示例数据框

data = {'A': [1, 2, 3, 4, 5], 'B': [5, 4, 3, 2, 1]}

df = pd.DataFrame(data)


# 计算 Pearson 相关系数

correlation_matrix = df.corr()

# 使用热图可视化 Pearson 相关系数

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")

plt.show()

说明:这段代码将生成一个热图,用颜色表示相关系数的强度,其中正相关用温暖色调表示,负相关用冷色调表示。annot=True 参数在热图上显示具体的数值。

选择相关性阈值

目录
相关文章
|
7月前
|
索引 Python
Pandas 高级教程——高级时间序列分析
Pandas 高级教程——高级时间序列分析
323 4
|
7月前
|
数据挖掘 索引 Python
如何在Python中,Pandas库实现对数据的时间序列分析?
【4月更文挑战第21天】Pandas在Python中提供了丰富的时间序列分析功能,如创建时间序列`pd.date_range()`,转换为DataFrame,设置时间索引`set_index()`,重采样`resample()`(示例:按月`'M'`和季度`'Q'`),移动窗口计算`rolling()`(如3个月移动平均)以及季节性调整`seasonal_decompose()`。这些工具适用于各种时间序列数据分析任务。
66 2
|
5月前
|
机器学习/深度学习 数据可视化 搜索推荐
Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。
【7月更文挑战第5天】Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。流程包括数据获取、预处理、探索、模型选择、评估与优化,以及结果可视化。示例展示了用户行为、话题趋势和用户画像分析。Python的丰富生态使得社交媒体洞察变得高效。通过学习和实践,可以提升社交媒体分析能力。
85 1
|
3月前
|
数据采集 数据挖掘 数据处理
Pandas实践:南京地铁数据处理分析
Pandas实践:南京地铁数据处理分析
40 2
|
3月前
|
数据挖掘 Python
掌握Pandas中的相关性分析:corr()方法详解
掌握Pandas中的相关性分析:corr()方法详解
201 0
|
3月前
|
数据处理 Python
Pandas实践(续):2023年南京地铁客运量分析
Pandas实践(续):2023年南京地铁客运量分析
48 0
|
4月前
|
分布式计算 数据可视化 大数据
Vaex :突破pandas,快速分析100GB大数据集
Vaex :突破pandas,快速分析100GB大数据集
|
4月前
|
存储 数据挖掘 API
多快好省地使用pandas分析大型数据集
多快好省地使用pandas分析大型数据集
|
6月前
|
数据采集 存储 数据可视化
Pandas高级教程:数据清洗、转换与分析
Pandas是Python的数据分析库,提供Series和DataFrame数据结构及数据分析工具,便于数据清洗、转换和分析。本教程涵盖Pandas在数据清洗(如缺失值、重复值和异常值处理)、转换(数据类型转换和重塑)和分析(如描述性统计、分组聚合和可视化)的应用。通过学习Pandas,用户能更高效地处理和理解数据,为数据分析任务打下基础。
691 3