如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
实时计算 Flink 版,5000CU*H 3个月
简介: 本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。

随着Apache Flink的广泛应用,越来越多的企业开始采用Flink on YARN模式来部署流处理应用,以充分利用集群资源。而在现代数据栈中,变更数据捕获(Change Data Capture,简称CDC)工具扮演着重要角色,它能够实时捕捉数据库中的变化数据,并将其转发至下游系统进行处理。本文将以部署Flink on YARN为例,探讨如何在Debezium CDC 3.0中进行相关配置,以确保数据流处理的顺利进行。

首先,假设我们已经在YARN集群上成功部署了Flink集群。接下来,为了能够使用Debezium CDC 3.0来捕获数据库变更事件并将这些事件发送给Flink进行处理,我们需要进行一系列配置。

步骤一:安装Debezium

Debezium是一个开源的分布式平台,用于流式捕获数据库的变更事件。在正式使用之前,确保Debezium已经安装并且配置正确。Debezium支持多种数据库,如MySQL、PostgreSQL等。以MySQL为例,首先需要在MySQL服务器上安装Debezium连接器。

安装MySQL连接器

# 下载Debezium MySQL连接器
wget https://repo1.maven.org/maven2/io/debezium/debezium-connector-mysql/1.6.1.Final/debezium-connector-mysql-1.6.1.Final-plugin.tar.gz

# 解压文件
tar -xzf debezium-connector-mysql-1.6.1.Final-plugin.tar.gz

# 将解压后的文件夹复制到Kafka Connect插件目录
sudo cp -r debezium-connector-mysql-1.6.1.Final /usr/share/kafka/plugins/

步骤二:配置Kafka Connect

Debezium通过Kafka Connect来捕获数据库的变更事件。因此,需要在Kafka Connect中添加Debezium连接器的配置。

配置Kafka Connect

name: mysql-debezium-source
config:
  connector.class: io.debezium.connector.mysql.MySqlSourceConnector
  tasks.max: 1
  database.hostname: localhost
  database.port: 3306
  database.user: debezium
  database.password: debezium
  database.server.id: 12345
  database.server.name: mydatabase
  database.whitelist: testdb
  database.history.kafka.bootstrap.servers: localhost:9092
  database.history.kafka.topic: schema-changes.testdb

步骤三:配置Flink任务

一旦Debezium连接器捕获到数据库的变更事件,下一步就是将这些事件导入Flink进行处理。这一步涉及到Flink任务的配置。

创建Flink任务

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;

public class FlinkDebeziumExample {
   

    public static void main(String[] args) throws Exception {
   
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        KafkaSource<String> kafkaSource = KafkaSource.<String>builder()
                .setBootstrapServers("localhost:9092")
                .setTopics("testdb.public.users")
                .setGroupId("flink-consumer-group")
                .setStartingOffsets(OffsetsInitializer.earliest())
                .setValueOnlyDeserializer(new SimpleStringSchema())
                .build();

        DataStream<String> sourceStream = env.addSource(kafkaSource)
                .assignTimestampsAndWatermarks(WatermarkStrategy.<String>forMonotonousTimestamps().build());

        sourceStream.print();

        env.execute("Flink Debezium Example");
    }
}

步骤四:启动Flink任务

最后,确保Flink集群已启动,然后提交上述Flink任务。

# 编译项目
mvn clean package

# 提交Flink任务
flink run target/flink-debezium-example-1.0.jar

通过以上步骤,我们成功地在Debezium CDC 3.0中配置了MySQL连接器,并且创建了一个简单的Flink任务来消费从Debezium接收到的变更事件。这为构建实时数据管道提供了一个坚实的基础。在实际生产环境中,还需要根据具体需求进行更详细的配置调整,例如增加错误处理逻辑、数据转换等高级功能。

综上所述,通过合理配置Debezium和Flink,我们可以实现从数据库变更事件到实时数据处理的无缝衔接,进而构建出高效可靠的数据处理流程。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
9天前
|
存储 监控 安全
数据库多实例的部署与配置方法
【10月更文挑战第23天】数据库多实例的部署和配置需要综合考虑多个因素,包括硬件资源、软件设置、性能优化、安全保障等。通过合理的部署和配置,可以充分发挥多实例的优势,提高数据库系统的运行效率和可靠性。在实际操作中,要不断总结经验,根据实际情况进行调整和优化,以适应不断变化的业务需求。
|
2天前
|
安全 Nacos 数据库
Nacos是一款流行的微服务注册与配置中心,但直接暴露在公网中可能导致非法访问和数据库篡改
Nacos是一款流行的微服务注册与配置中心,但直接暴露在公网中可能导致非法访问和数据库篡改。本文详细探讨了这一问题的原因及解决方案,包括限制公网访问、使用HTTPS、强化数据库安全、启用访问控制、监控和审计等步骤,帮助开发者确保服务的安全运行。
11 3
|
6天前
|
PHP 数据库 数据安全/隐私保护
布谷直播源码部署服务器关于数据库配置的详细说明
布谷直播系统源码搭建部署时数据库配置明细!
|
8天前
|
Java 数据库连接 数据库
如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面
本文介绍了如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面。通过合理配置初始连接数、最大连接数和空闲连接超时时间,确保系统性能和稳定性。文章还探讨了同步阻塞、异步回调和信号量等并发控制策略,并提供了异常处理的最佳实践。最后,给出了一个简单的连接池示例代码,并推荐使用成熟的连接池框架(如HikariCP、C3P0)以简化开发。
21 2
|
9天前
|
关系型数据库 MySQL Linux
在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。
本文介绍了在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。同时,文章还对比了编译源码安装与使用 RPM 包安装的优缺点,帮助读者根据需求选择最合适的方法。通过具体案例,展示了编译源码安装的灵活性和定制性。
45 2
|
26天前
|
存储 SQL 关系型数据库
Mysql学习笔记(二):数据库命令行代码总结
这篇文章是关于MySQL数据库命令行操作的总结,包括登录、退出、查看时间与版本、数据库和数据表的基本操作(如创建、删除、查看)、数据的增删改查等。它还涉及了如何通过SQL语句进行条件查询、模糊查询、范围查询和限制查询,以及如何进行表结构的修改。这些内容对于初学者来说非常实用,是学习MySQL数据库管理的基础。
103 6
|
24天前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
56 3
Mysql(4)—数据库索引
|
12天前
|
存储 关系型数据库 MySQL
MySQL vs. PostgreSQL:选择适合你的开源数据库
在众多开源数据库中,MySQL和PostgreSQL无疑是最受欢迎的两个。它们都有着强大的功能、广泛的社区支持和丰富的生态系统。然而,它们在设计理念、性能特点、功能特性等方面存在着显著的差异。本文将从这三个方面对MySQL和PostgreSQL进行比较,以帮助您选择更适合您需求的开源数据库。
53 4
|
17天前
|
存储 关系型数据库 MySQL
如何在MySQL中创建数据库?
【10月更文挑战第16天】如何在MySQL中创建数据库?
|
21天前
|
SQL Oracle 关系型数据库
安装最新 MySQL 8.0 数据库(教学用)
安装最新 MySQL 8.0 数据库(教学用)
93 4