高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率

简介: 在数字化时代,企业面临海量客户对话数据处理的挑战。阿里云推出的“AI大模型助力客户对话分析”解决方案,通过先进的AI技术和智能化分析,帮助企业精准识别客户意图、发现服务质量问题,并生成详尽的分析报告和可视化数据。该方案采用按需付费模式,有效降低企业运营成本,提升客服质量和销售转化率。

引言

在数字化时代,企业面临着海量客户对话数据的处理挑战,迫切需要从这些数据中提取有价值的洞察,以提升服务质量和客户体验。阿里云推出的“AI大模型助力客户对话分析”技术解决方案,正是为此而生。通过先进的AI大模型和智能化分析技术,该方案不仅能够精准识别客户意图和发现服务质量问题,还能生成详尽的分析报告和可视化数据,帮助企业高效地进行决策支持。更重要的是,其按需付费的模式大大降低了企业的运营成本,使得中小企业也能轻松享受到高端AI技术带来的便利。本文将详细介绍这一解决方案如何在提升客服质量和销售转化率方面发挥重要作用。

方案地址如下:服务优化新策略:AI大模型助力客户对话分析

架构设计

image.png

通过函数计算提供对话分析服务和网站,使用对象存储来存储音频文件,利用智能对话分析技术将音频转换为文字,最后通过通义千问大模型对对话内容进行分析,生成详细的分析报告及评分。所有云服务均使用按量计费,可以有效降低实施和维护成本。

快速部署

点击上述方案地址,选择【立即部署】:

image.png

以下四个服务是必须要提前开通的:

image.png

开通函数计算服务

image.png

开通百炼服务

image.png

开通智能语音交互并创建项目

image.png
image.png

开通对象存储服务

image.png

当以上四个服务开通完成后,点击查看【部署方案】:

image.png

登录阿里云百炼大模型服务平台,查看API-KEY:

image.png

登录OSS管理控制台,在左侧导航栏,单击Bucket 列表,然后单击创建 Bucket:

image.png

在创建 Bucket面板,选择快捷创建,按下图配置各项参数,将Bucket名称保存到本地:

image.png

接下来您需要配置Bucket的跨域设置,允许示例应用跨域上传文件:

image.png

按照下图填入来源和、允许Methods和允许Headers,单击确定:

image.png

接下来登录智能语音交互控制台,在左侧导航栏单击全部项目,在我的所有项目页面,单击创建项目,在创建项目对话框中,填写项目名称,按照下图选择项目类型,选填项目场景描述,单击确定。

image.png

创建完成后,可以在我的所有项目页面查看已创建的项目,复制Appkey保存到本地,后续步骤会使用。

image.png

点击此处模板

image.png

填入之前保存的百炼 API Key、智能语音交互的 App Key 和刚刚创建的 OSS Bucket

image.png

如提示需要额外一些权限,点击前往授权

image.png

同意授权即可

image.png

等待部署成功后,点击访问域名,访问示例应用

image.png

在页面点击新建质检任务,在新建质检任务页面,点击上传音频文件,点击开始AI质检即可

image.png

如果需要自己调整质检规则,可以进入修改llm_analysis.py当前方案使用的大模型提示词,提示词如下:

请根据以下对话内容,对客服在以下四个方面的表现进行质检评分,并给出详细的建议和改进意见。
评估维度:

服务态度(评分范围:1-5)

描述:客服是否表现出积极、礼貌和耐心的态度?在面对客户的提问和问题时,是否有真诚的关心和同理心?
评分标准:
1:非常差(态度冷漠、不耐烦、不礼貌)
2:较差(态度不够积极,缺乏耐心)
3:一般(基本礼貌,但缺乏热情)
4:良好(态度积极,比较耐心)
5:非常好(态度非常积极,极具耐心和同理心)
建议和改进意见:
业务处理能力(评分范围:1-5)

描述:客服是否熟练掌握相关产品或服务的知识?是否能够快速、准确地回答客户的问题,提供有效的解决方案?
评分标准:
1:非常差(明显缺乏相关知识,无法提供任何有效帮助)
2:较差(对业务知识掌握不够,提供的信息不够准确或有误导性)
3:一般(对基本问题能够解答,但缺乏深入了解或细节不足)
4:良好(对大部分问题能有效处理,业务知识扎实)
5:非常好(业务知识非常丰富,处理问题非常有效且迅速)
建议和改进意见:
沟通能力(评分范围:1-5)

描述:客服的沟通是否清晰明了?语言表达是否得体、流畅?是否能够很好地引导客户并确认客户理解信息?
评分标准:
1:非常差(沟通不清,表达不明确,客户难以理解)
2:较差(表达不够清晰,信息传达不完整)
3:一般(沟通基本清楚,但偶尔有模糊或不清楚的地方)
4:良好(沟通清晰,语言表达流畅)
5:非常好(沟通非常清晰,能够有效引导客户并确保理解)
建议和改进意见:
是否解决问题(评分范围:1-5)

描述:客服是否有效解决了客户的问题或提供了明确的后续解决路径?如果未能立即解决,是否给予了详细的解释或替代方案?
评分标准:
1:非常差(没有解决问题,也没有提供任何解决方向或后续行动建议)
2:较差(未能解决问题,给出的问题解决方向或建议不够明确或不可行)
3:一般(部分解决问题,但有待改进,或没有明确后续措施)
4:良好(问题得到解决,或提供了明确的解决路径和后续措施)
5:非常好(问题完全解决,客户满意,并提供了优质的后续支持)
建议和改进意见:

请输出JSON格式结果,参考格式如下:
{
   example}
对话内容:
{
   content}

总结

从上面可以看出,该解决方案确实为企业提供了一种高效、经济的方式来处理海量客户对话数据,不仅显著提升了客服质量和客户满意度,还通过深度数据分析优化了销售策略,提高了转化率。借助阿里云的强大技术支持,企业能够更快地获取有价值的业务洞察,灵活调整服务和营销策略,最终实现成本的有效控制和业绩的持续增长。无论是客服团队还是销售部门,都能从这一创新的技术解决方案中获益,推动企业向数字化、智能化转型迈出坚实的一步。

相关文章
|
4天前
|
存储 人工智能 缓存
官宣开源 阿里云与清华大学共建AI大模型推理项目Mooncake
近日,清华大学和研究组织9#AISoft,联合以阿里云为代表的多家企业和研究机构,正式开源大模型资源池化项目 Mooncake。
|
22天前
|
人工智能 安全 测试技术
探索AI在软件开发中的应用:提升开发效率与质量
【10月更文挑战第31天】在快速发展的科技时代,人工智能(AI)已成为软件开发领域的重要组成部分。本文探讨了AI在代码生成、缺陷预测、自动化测试、性能优化和CI/CD中的应用,以及这些应用如何提升开发效率和产品质量。同时,文章也讨论了数据隐私、模型可解释性和技术更新等挑战。
|
21天前
|
人工智能 架构师
活动火热报名中|阿里云&Elastic:AI Search Tech Day
2024年11月22日,阿里云与Elastic联合举办“AI Search Tech Day”技术思享会活动。
175 9
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
自动化测试的新篇章:利用AI提升软件质量
【10月更文挑战第35天】在软件开发的海洋中,自动化测试犹如一艘救生艇,它帮助团队确保产品质量,同时减少人为错误。本文将探索如何通过集成人工智能(AI)技术,使自动化测试更加智能化,从而提升软件测试的效率和准确性。我们将从AI在测试用例生成、测试执行和结果分析中的应用出发,深入讨论AI如何重塑软件测试领域,并配以实际代码示例来说明这些概念。
45 3
|
21天前
|
存储 人工智能 大数据
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
25天前
|
人工智能 Kubernetes 云计算
第五届CID大会成功举办,阿里云基础设施加速AI智能产业发展!
2024年10月19日,第五届中国云计算基础架构开发者大会(CID)在北京朗丽兹西山花园酒店成功举办。本次大会汇聚了来自云计算领域的众多精英,不同背景的与会者齐聚一堂,共同探讨云计算技术的最新发展与未来趋势。
|
25天前
|
人工智能 Kubernetes 云计算
第五届CID大会成功举办,阿里云基础设施加速AI智能产业发展!
第五届中国云计算基础架构开发者大会(CID)于2024年10月19日在北京成功举办。大会汇聚了300多位现场参会者和超过3万名在线观众,30余位技术专家进行了精彩分享,涵盖高效部署大模型推理、Knative加速AI应用Serverless化、AMD平台PMU虚拟化技术实践、Kubernetes中全链路GPU高效管理等前沿话题。阿里云的讲师团队通过专业解读,为与会者带来了全新的视野和启发,推动了云计算技术的创新发展。
|
8天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
40 1

热门文章

最新文章