基于遗传优化的SVD水印嵌入提取算法matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。

1.程序功能描述
基于遗传优化的的SVD水印嵌入提取算法。对比遗传优化前后SVD水印提取性能,并分析不同干扰情况下水印提取效果。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

SVD
823c0e4fd03d2606b185174485496430_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

GA优化SVD
6a418d1018ebb7d9ce1ffde6530f16ac_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

性能对比:

3.jpeg
4.jpeg
5.jpeg

3.核心程序

```% 遍历遗传算法返回的各代最优个体(从第二个开始,跳过第一个)
for i = 2:npop
% 使用当前个体对应的步长参数进行SVD嵌入水印
step_size = a(i);
Wimg = func_svd_embeded(I0, Iwat, step_size);

% 计算插入水印后图像的峰值信噪比(PEAKSNR)
[m, n] = size(I0);

error = I0 - Iatt;
MSE = (sum(sum(error .^ 2))) / (m * n);
if (MSE > 0)
   peaksnr = 10 * log10(255^2 / MSE);
else
   peaksnr = 99;
end

% 从攻击后图像中提取水印
wimg = func_svd_extract(Iatt, step_size);

% 存储原始水印图像,用于后续计算归一化相关系数
orig_Iwat = Iwat;

% 计算归一化相关系数(NC)作为目标函数值
norm_cor = corr2(orig_Iwat, wimg);

% 计算目标函数值(归一化相关系数)
obfunc = norm_cor;


% 更新最大目标函数值、最佳步长、PEAKSNR和NC,以及最终图像
if (obfunc > max)
    max = obfunc;
    step = step_size;
    peaksnr_value = peaksnr;
    NC = norm_cor;
    final_image = Iatt; % 存储最佳攻击后图像
end

end
[peaksnr_value,NC]
peaksnr2(ij,kk) = peaksnr_value;
norm_cor2(ij,kk) = NC;
end
end

figure;
subplot(121);
plot(NB,mean(peaksnr2,2),'b-o');
xlabel('噪声大小');
ylabel('图像PSNR');

subplot(122);
plot(NB,mean(norm_cor2,2),'b-o');
xlabel('噪声大小');
ylabel('提取水印NC');

save R2.mat NB peaksnr2 norm_cor2

```

4.本算法原理
遗传优化是一种基于自然选择和遗传机制的全局优化算法,其在图像水印嵌入与提取领域中有着广泛应用。特别是在SVD( Singular Value Decomposition,奇异值分解)水印算法中,遗传优化能有效地寻找到最佳的水印嵌入参数,以提高水印的鲁棒性和隐蔽性。

SVD水印嵌入:给定一幅待嵌入水印的宿主图像 I,通过奇异值分解将其分解为 I=UΣVT。在选定的奇异值子集上添加水印信息(通常以量化形式表示),然后重构图像得到嵌入水印后的图像 Iw​=U(Σ+W)VT,其中 W 为水印信息在奇异值上的映射。

遗传优化:以种群(一组候选解)为基础,通过模拟自然选择、交叉和变异等生物进化过程,逐步优化水印嵌入参数(如嵌入层选择、量化步长、水印强度等),以最大化水印的鲁棒性或隐蔽性。

ed801e7e9d48d3d289c19bd1db23c9b6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

遗传算法流程
初始化:设置遗传算法参数(种群大小、迭代次数、交叉概率、变异概率等),随机生成初始种群,每个个体代表一组水印嵌入参数。

适应度评估:计算种群中每个个体的鲁棒性得分FR​(θ) 和隐蔽性得分 FH​(θ),根据实际需求选择合适的评价指标(如加权和、折衷函数等)。

选择:根据适应度得分进行选择操作,保留优秀个体进入下一代种群,常用的策略有轮盘赌选择、tournament选择等。

交叉:对选定的个体进行交叉操作,生成新的子代个体。常见的交叉方法有单点交叉、两点交叉、均匀交叉等。

变异:以一定概率对子代个体的某些参数进行变异,打破遗传过程中的局部最优,增加种群多样性。常用变异操作包括二进制变异、实数域均匀变异、高斯变异等。

更新:将交叉和变异产生的子代个体加入下一代种群,替换掉被淘汰的个体。

迭代:若达到最大迭代次数或收敛条件满足,则停止;否则,返回步骤2继续下一轮迭代。

最优解选取:从最终种群中选择适应度最高的个体作为最佳水印嵌入参数。

相关文章
|
13天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
1天前
|
算法 数据安全/隐私保护 索引
索引OFDM调制解调系统的matlab性能仿真
本文对m索引OFDM调制解调系统性能进行了仿真分析,增加了仿真图并配有语音讲解视频,使用Matlab2022a完成仿真,代码无水印。研究了OFDM-IM技术,通过激活不同子载波组合传输额外信息,提高频谱效率和降低PAPR。提出了OFDM联合子块索引调制技术(OFDM-JS-IM)和OFDM全索引方法(OFDM-AIM),并通过遗传算法优化子块查找表,有效提升系统性能。提供了核心MATLAB程序示例。
21 3
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
20天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
1天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
205 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
131 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
95 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)