太阳能光伏电池的simulink建模与仿真

简介: 本课题研究了太阳能光伏电池在不同光照温度和光照强度下的Simulink建模与仿真,分析了光伏电池的U-I特性和P-V特性曲线。通过MATLAB 2022a进行仿真,展示了不同温度下的特性曲线变化,揭示了温度对光伏电池性能的影响。核心原理包括光生电效应、PN结的形成与工作机理,以及载流子的产生、分离和收集过程。

1.课题概述
太阳能光伏电池的simulink建模与仿真.分析不同光照温度,光照强度下的光伏电池的U-I特性曲线以及P-V特性曲线。

2.系统仿真结果

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

3.核心程序与模型
版本:MATLAB2022a

f0f592818a3c3ce950436c96e040d4b8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

clear;
close all;
warning off;

R   = 1;



load PV_p_T20.mat
P20 = ans.Data;
load PV_v_T20.mat
V20 = R*ans.Data;



load PV_p_T40.mat
P40 = ans.Data;
load PV_v_T40.mat
V40 = R*ans.Data;



load PV_p_T60.mat
P60 = ans.Data;
load PV_v_T60.mat
V60 = R*ans.Data;


figure;
plot(V20,P20,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(V40,P40,'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
hold on
plot(V60,P60,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on
legend('20℃','40℃','60℃');

xlabel('U (v)');
ylabel('P (w)');
grid on
axis([0,130,0,200]);





load VI_i_T20.mat
I20 = ans.Data;
load VI_v_T20.mat
V20 = ans.Data;


load VI_i_T40.mat
I40 = ans.Data;
load VI_v_T40.mat
V40 = ans.Data;



load VI_i_T60.mat
I60 = ans.Data;
load VI_v_T60.mat
V60 = ans.Data;


figure;
plot(V20,I20,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(V40,I40,'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
hold on
plot(V60,I60,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on
legend('20℃','40℃','60℃');

xlabel('U (v)');
ylabel('I (A)');
grid on
axis([0,130,0,4]);
02_053m

4.系统原理简介
太阳能光伏电池,也称为太阳能电池或光伏单元,是一种能够将太阳能直接转换为电能的半导体器件。其核心原理是光生电效应,即当光照射到半导体材料上时,光子与半导体中的原子相互作用,导致电子从价带跃迁到导带,形成光生电子-空穴对。这些光生载流子(电子和空穴)在半导体内部被分离并收集,从而产生电流。

4.1 光伏电池的基本结构
光伏电池通常由N型半导体和P型半导体构成,形成PN结。在PN结附近,由于N型和P型半导体的费米能级不同,会形成内建电场。当光照射到PN结上时,产生的光生电子-空穴对在内建电场的作用下被分离,电子被推向N区,空穴被推向P区,从而在PN结两端形成电势差。

4.2 光伏电池的工作原理
光吸收:当太阳光照射到光伏电池表面时,光子穿过减反射膜和电池表面,进入半导体材料。光子能量必须大于半导体材料的禁带宽度(Eg),才能被吸收并产生光生电子-空穴对。

载流子产生与分离:吸收光子后,半导体中的电子从价带跃迁到导带,留下空穴。这些光生电子和空穴在内建电场的作用下被分离,电子移向N区,空穴移向P区。

载流子收集:分离后的电子和空穴分别被光伏电池两端的电极收集。电子通过外部电路流向负载,产生电流;空穴则通过P区与电极接触,流回电池内部与电子复合。

电流与电压输出:当光伏电池连接到负载上时,电流从N区流出,经过负载流回P区。同时,PN结两端形成的电势差提供输出电压。

   实际应用中,太阳能电池的制造涉及多个物理过程和技术优化,包括半导体材料的选择、PN结的设计、减反射层的使用、以及各种提高效率和稳定性的工艺技术等。
相关文章
|
13天前
|
Web App开发
风力发电电网系统的simulink建模与仿真
本课题基于MATLAB2022a的Simulink平台,对风力发电电网系统进行建模与仿真。系统通过叶片捕获风能,转化为机械能再转化为电能,风速与输出功率关系遵循伯努利定律和叶素理论。电力电子变换器将交流电转换为适合电网接入的电压和频率,并网控制策略确保系统与电网同步。
|
5天前
|
传感器 算法
基于MPPT的风力机发电系统simulink建模与仿真
本课题基于最大功率点跟踪(MPPT)技术,对风力机发电系统进行Simulink建模与仿真。通过S函数实现MPPT算法,实时监测和调整风力发电机的工作状态,使其始终工作在最佳效率点,从而最大限度地利用风能,提高风力发电效率。系统包括风速传感器、发电机状态监测模块、MPPT控制器、发电机驱动系统及反馈回路,确保闭环控制的稳定性和准确性。
|
1月前
|
vr&ar C++
基于simulink的风轮机发电系统建模与仿真
本课题使用Simulink实现风轮机发电系统的建模与仿真,涵盖风速模型(基本风、阵风、阶跃风、随机风)、风力机模型及飞轮储能模块。采用MATLAB 2022a进行仿真,详细介绍了各风速成分的数学模型及其组合模型,阐述了风力机从风能捕获到电能输出的全过程,为风力发电系统的设计和优化提供了理论基础和技术支持。
|
2月前
|
算法
基于PSO优化的MPPT最大功率跟踪光伏发电系统simulink仿真
本课题在Simulink中构建了基于粒子群优化(PSO)的最大功率点跟踪(MPPT)光伏发电系统,包括光伏模块、MPPT模块、PSO优化模块及电路模块。PSO模块采用Matlab编程并在Simulink中调用。系统通过优化算法在复杂环境下实现高效MPPT。仿真结果显示该系统具有良好的性能。版本:MATLAB2022a。
|
3月前
|
算法
基于智能电网系统的PQ并网控制器simulink建模与仿真
在MATLAB 2022a的Simulink环境中构建智能电网PQ并网控制器模型,实现对并网三相电压电流的精确控制及其收敛输出。PQ控制器根据实时需求调节有功与无功功率,确保电力系统稳定。通过测量、计算、比较、控制和执行五大环节,实现PQ参考值的跟踪,保证电能质量和系统稳定性。广泛适用于可再生能源并网场景。
基于智能电网系统的PQ并网控制器simulink建模与仿真
|
2月前
|
算法
基于simulink的光伏并网逆变器电网系统建模与仿真
本课题使用Simulink实现光伏并网逆变器的建模与仿真,该逆变器负责将光伏电池板产生的直流电转换为与电网同步的交流电。系统通过最大功率点跟踪(MPPT)、DC-DC转换、DC-AC转换及滤波处理,确保电能质量并与电网同步。Simulink模型基于MATLAB 2022a版本构建。
|
3月前
|
算法 芯片
基于MPPT最大功率跟踪算法的光伏并网发电系统simulink仿真
本项目采用Simulink仿真构建基于MPPT的最大功率跟踪光伏并网发电系统,自行建立PV模型而非使用内置模块。系统包含MPPT控制器、PI控制器、锁相环及逆变器等,实现光伏阵列在各种条件下高效运行于最大功率点。仿真结果显示光伏并网输出的电流(Ipv)、电压(Upv)及功率(Ppv)波形。通过闭环控制,系统持续调整以维持最佳功率输出,有效提升光伏系统的整体效能和环境适应性。
|
4月前
|
运维
基于IEEE13电网系统HIF模型的simulink建模与仿真
**摘要:** 构建基于IEEE13节点的HIF模型Simulink仿真,模拟谐波影响。系统设定为110V/60Hz,使用MATLAB2022a。HIF模型在节点注入谐波,分析其在电网中的传播。故障电流计算公式涉及相电压、地电压和故障阻抗。系统响应通过频率域分析,利用卷积计算X(f)=S(f)*G(f),检测HIF事件。研究旨在改进故障检测,应对传统保护策略失效的情况。
|
4月前
|
存储
基于蓄电池和飞轮混合储能系统的SIMULINK建模与仿真
构建了基于SIMULINK的蓄电池-飞轮混合储能系统模型,重点在于飞轮模型与控制策略。仿真展示了充放电电流电压、功率波形及交流负载端的电气参数变化,揭示了系统从波动到稳定的过程。 ### 系统原理 - 混合储能系统结合了蓄电池(化学能转换)和飞轮(动能存储)的优势,提供高效快速的能量响应。 - 蓄电池通过化学反应进行能量储存和释放。 - 飞轮储能利用电动机/发电机转换动能和电能。 - 智能控制协调二者工作,适应电力系统需求,提升系统性能。 ### 混合储能原理 混合系统利用控制系统协同蓄电池和飞轮,优化充电和放电,以提高储能效率和电力系统的整体表现,预示着其未来广泛应用的潜力。
【Simulink】飞轮储能系统的建模与MATLAB仿真(永磁同步电机作为飞轮驱动电机)
【Simulink】飞轮储能系统的建模与MATLAB仿真(永磁同步电机作为飞轮驱动电机)