基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序

简介: 本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。

1.算法运行效果图预览
(完整程序运行后无水印)
image.png

将FPGA的仿真结果导入到MATLAB中,分别得到MATLAB的结果和FPGA的结果:

image.png
image.png

2.算法运行软件版本
vivado2019.2

matlab2022a

3.部分程序
(完整版代码包含详细中文注释和操作步骤视频)
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2022/07/28 01:51:45
// Design Name:
// Module Name: test_image
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test_image;
reg i_clk;

reg i_rst;

reg [7:0] Buffer1 [0:300000];
reg [7:0] Buffer2 [0:300000];
reg [7:0] Buffer3 [0:300000];
reg [7:0] II1;
reg [7:0] II2;
reg [7:0] II3;
wire [7:0]o_cfbw;
integer fids1,fids2,fids3,idx=0,dat1,dat2,dat3;

//D:\FPGA_Proj\FPGAtest\codepz
initial
begin
fids1 = $fopen("D:\code\Proj\1.bmp","rb");//调用3个图片
dat1 = $fread(Buffer1,fids1);
$fclose(fids1);
end
initial
begin
fids2 = $fopen("D:\code\Proj\2.bmp","rb");//调用3个图片
dat2 = $fread(Buffer2,fids2);
$fclose(fids2);
end
initial
begin
fids3 = $fopen("D:\code\Proj\3.bmp","rb");//调用3个图片
dat3 = $fread(Buffer3,fids3);
$fclose(fids3);
end

initial
begin
i_clk=1;
i_rst=1;

1000;

i_rst=0;
end

always #5 i_clk=~i_clk;

always@(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
II1<=8'd0;
II2<=8'd0;
II3<=8'd0;
idx<=0;
end
else begin
if(idx<=263145)
begin
II1<=Buffer1[idx];
II2<=Buffer2[idx];
II3<=Buffer2[idx];
end
else begin
II1<=8'd0;
II2<=8'd0;
II3<=8'd0;
end

    idx<=idx+1;
end

end

//调用合并模块
tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_I1 (II1),
.i_I2 (II2),
.i_I3 (II3),
.o_cfbw (o_cfbw)
);

endmodule
0X_038m

```

4.算法理论概述
运动目标检测是计算机视觉中的一个重要问题,它涉及到从连续的视频帧中识别出运动物体的过程。这项技术在许多领域都有着广泛的应用,如安防监控、自动驾驶、人机交互等。三帧差算法作为一种简单的运动目标检测方法,通过对连续三帧图像的像素值进行比较,来识别出运动区域。

   假设视频流中的连续三帧图像分别为It, It−1, It−2,其中t 表示当前时间点,t−1 和t−2 分别表示前一帧和前两帧。差分图像是通过计算相邻帧之间的像素值差异来获取的。对于三帧差算法而言,我们首先计算相邻两帧之间的差分图像,然后将这两个差分图像相加以获取最终的差分图像。具体步骤如下:

image.png

  在获取最终的差分图像后,我们可以通过设定阈值 T 来检测运动目标。如果某像素点在差分图像中的值超过阈值,则认为该像素点属于运动区域。

  设定阈值 T,如果某像素点(i,j) 在差分图像Dfinal 中的值大于T,则认为该像素点属于运动目标:

image.png

   基于三帧差算法的运动目标检测是一种简单而有效的技术,它通过计算连续三帧图像之间的差分来检测运动目标。虽然这种方法容易受到光照变化和摄像机抖动等因素的影响,但通过一些改进措施(如适应性阈值、高斯滤波和光照补偿等),可以显著提高检测的准确性和鲁棒性。
相关文章
|
4天前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
21 8
|
20天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
39 1
|
29天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
37 3
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
50 4
|
22天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的256QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了256QAM调制解调算法的仿真效果及理论基础。使用Vivado 2019.2进行仿真,分别在SNR为40dB、32dB和24dB下生成星座图,并导入Matlab进行分析。256QAM通过将8比特数据映射到复平面上的256个点,实现高效的数据传输。Verilog核心程序包括调制、信道噪声添加和解调模块,最终统计误码率。
31 0
|
2月前
|
缓存 分布式计算 监控
算法优化:提升程序性能的艺术
【10月更文挑战第20天】算法优化:提升程序性能的艺术
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
13天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
21天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
22天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。