基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。

1.程序功能描述
旅行商问题(Traveling Salesman Problem, TSP)是组合优化领域的一个经典NP难问题,旨在寻找访问一系列城市并返回起点的最短路径。本文将详细介绍基于GA-PSO遗传粒子群混合优化算法在求解TSP问题中的应用。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg

3.核心程序
```while gen <= Iters
gen
%更新
for i=1:Npop
%交叉
Pops(i,2:end-1) = func_cross(Pops(i,2:end-1),Pbest(i,2:end-1));
Popd(i) = func_dist(Pops(i,:),Mdist); %计算距离
if Popd(i) < Pdbest(i)
Pbest(i,:) = Pops(i,:);
Pdbest(i) = Popd(i);
end

    %更新Gbest
    [mindis,index] = min(Pdbest); 
    if mindis < Gdbest 
       Gbest  = Pbest(index,:); 
       Gdbest = mindis; 
    end

    %粒子与Gbest交叉
    Pops(i,2:end-1) = func_cross(Pops(i,2:end-1),Gbest(2:end-1));
    Popd(i) = func_dist(Pops(i,:),Mdist); 
    if Popd(i) < Pdbest(i) 
        Pbest(i,:) = Pops(i,:); 
        Pdbest(i)  = Popd(i); 
    end

    %粒子变异
    Pops(i,:) = func_Mut(Pops(i,:));
    Popd(i)   = func_dist(Pops(i,:),Mdist); 
    if Popd(i) < Pdbest(i) 
        Pbest(i,:)=Pops(i,:); 
        Pdbest(i)=Popd(i); 
    end

    %更新Gbest
    [mindis,index] = min(Pdbest); %最短距离

    if mindis < Gdbest 
        Gbest = Pbest(index,:); 
        Gdbest = mindis; 
    end
end
%存储此代最短距离
gbest(gen)=Gdbest;
%更新迭代次数
gen=gen+1;

end

p=num2str(Gbest(1)); %配送路径
for i=2:length(Gbest)
p=[p,' -> ',num2str(Gbest(i))];
end
disp(p)
Gdbest

figure
plot(gbest,'LineWidth',2)
xlim([1 gen-1])
xlabel('迭代次数')
ylabel('最优距离(km)')

DrawPath(Gbest,City)
0013

```

4.本算法原理
旅行商问题(Traveling Salesman Problem, TSP)是组合优化领域的一个经典NP难问题,旨在寻找访问一系列城市并返回起点的最短路径。本文将详细介绍基于GA-PSO遗传粒子群混合优化算法在求解TSP问题中的应用,并通过标准的数学公式进行推导和解释。

4.1 TSP问题描述
TSP问题可以描述为:给定一个城市集合和每对城市之间的距离,要求找出访问每个城市一次并返回起点的最短路径。

4.2 遗传算法(Genetic Algorithm, GA)在TSP中的应用
遗传算法是一种模拟自然选择和遗传学机制的优化算法,适用于求解组合优化问题。在TSP问题中,GA通过编码生成初始路径种群,然后通过选择、交叉和变异等操作不断迭代优化,最终找到近似最优解。

   编码方式:采用自然数编码,每个城市的编号代表一个基因,一条路径则由一串基因组成。
   初始种群生成:随机生成一定数量的初始路径,构成初始种群。
   适应度函数:以适应度函数来衡量每个个体的优劣。在TSP问题中,适应度函数通常取为路径长度的倒数。
   选择操作:采用轮盘赌选择法,即根据每个个体的适应度值在总体适应度值中的比例来选择个体。
   交叉操作:采用部分映射交叉(PMX)或顺序交叉(OX)等方法,生成新的个体。
    变异操作:通过随机交换路径中两个城市的位置来实现变异。

4.3子群优化算法(Particle Swarm Optimization, PSO)在TSP中的应用
粒子群优化算法是一种模拟鸟群觅食行为的优化算法,适用于连续和离散优化问题。在TSP问题中,PSO将每个解看作一个粒子,通过不断更新粒子的速度和位置来寻找最优解。

   粒子表示:每个粒子表示一个可能的解,即一条路径。粒子的位置由路径中城市的排列顺序决定。
    速度更新公式:根据每个粒子的历史最优位置和群体最优位置来更新粒子的速度。速度更新公式为:(v_{id} = w * v_{id} + c1 * rand() * (pbest_{id} - x_{id}) + c2 * rand() * (gbest_d - x_{id})),其中 (v_{id}) 表示第i个粒子在第d维上的速度,(x_{id}) 表示第i个粒子在第d维上的位置,(pbest_{id}) 表示第i个粒子在第d维上的历史最优位置,(gbest_d) 表示群体在第d维上的最优位置,w为惯性权重,c1和c2为学习因子,rand()为随机数生成函数。
    位置更新公式:根据更新后的速度来更新粒子的位置。位置更新公式为:(x_{id} = x_{id} + v_{id})。需要注意的是,在更新位置时要保证新生成的路径满足TSP问题的约束条件。

4.4 GA-PSO混合优化算法在TSP中的应用
GA-PSO混合优化算法结合了遗传算法和粒子群优化算法的优点,通过GA的全局搜索能力和PSO的局部搜索能力来提高求解TSP问题的效率和质量。具体步骤如下:

初始化:生成初始种群,并随机初始化粒子的位置和速度。
适应度评估:计算每个个体的适应度值。
选择操作:根据适应度值选择优秀的个体进入下一代种群。
交叉操作:对选中的个体进行交叉操作,生成新的个体。
变异操作:对新生成的个体进行变异操作。
PSO优化:将新生成的个体作为粒子群中的粒子,进行速度和位置的更新操作。同时记录每个粒子的历史最优位置和群体最优位置。
终止条件判断:判断是否达到终止条件(如达到最大迭代次数或找到满足精度要求的最优解)。若满足终止条件则结束算法;否则返回步骤2继续迭代优化。

相关文章
|
7天前
|
存储 关系型数据库 分布式数据库
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称。本文深入解析PolarStore的内部机制及优化策略,包括合理调整索引、优化数据分布、控制事务规模等,旨在最大化其性能优势,提升数据存储与访问效率。
20 5
|
22天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
23天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
22天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
1天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
1月前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
2月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
2月前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
22 1
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。