深度学习笔记(十四):Transormer知识总结

简介: 关于深度学习中Transformer模型的知识总结,涵盖了Self-attention机制、QKV、Multi-head attention、位置编码和并行运算等关键概念,以及如何在PyTorch中实现Self-attention。

1. 谈谈你的理解🎄

最开始运用在NLP中的,它就相当于一个Attention结构,它相当于将一张图片平均分割成很多窗口,每个窗口相当于NLP里面的每个词,如果在目标检测中就是每个序列,然后计算每个序列上下文关系,然后将所有的关系融入在一起,这样就能够直接获取全局信息了,而不像CNN那样需要逐步递归才能获得全局信息,也不像RNN那样速度很慢,是因为它可以并行计算。

2. 什么是Self-attention🎄

在这里插入图片描述
self-attention就是自注意机制,也就是说当前时刻的输入不止关注当前时刻的信息,还会关注其它时刻的或者说关注所有的时刻信息,计算出其相关性,得到注意力权重矩阵。

3. 什么是Q、K、V🎄

在这里插入图片描述
首先Attention的任务是获取局部关注的信息。Attention的引入让我们知道输入数据中,哪些地方更值得关注。
Q、K、V都源于输入特征本身,是根据输入特征产生的向量。V可以看做表示单个输入特征的向量,我们直接将V输入到网络中进行训练是没有引入Attention的网络。如果要引入Attention网络就需要通过V乘以一组权重,这个权重由Q和K计算得来,就可以做到关注局部输入特征。

  • V:输入特征的向量 Q和K:计算Attention权重的特征向量。
  • Attention机制中的Q,K,V:我们对当前的Query和所有的Key计算相似度,将这个相似度值通过Softmax层进行得到一组权重,根据这组权重与对应Value的乘积求和得到Attention下的Value值。

4. 什么是Multi-head attention🎄

在这里插入图片描述
multi-head attention是多个自注意机制模块,通过对self-attention赋予不一样的权重,来得到不一样的结果,并把所有的attention结果拼接起来,通过一个全连接层得到最终结果,从而有助于捕捉到更丰富特征。

5. 什么是位置编码,解决什么问题🎄

由于同一张映射图,目标在不同的位置,Transormer中attention机制并没有包含其位置信息,是不能够进行有效区分的,比如说最简单的我喜欢你和你喜欢我是不一样的结果,所以我们通过加入了位置编码,这样就能够区分到底是谁喜欢谁这一问题,也就是说模型可以考虑前后位置的关系。

6. 如何理解transformer的并行运算🎄

最核心的在multi-head attention ,多组KQV进行self-attention运算,它们是可以同时运算的,由于使用同步运算,所以对于硬件要求比较高。

7. self-attention pytorch 代码🎄

import torch
import numpy as np
import torch.nn as nn
import math
import torch.nn.functional as F

class selfAttention(nn.Module) :
    def __init__(self, num_attention_heads, input_size, hidden_size):
        super(selfAttention, self).__init__()
        if hidden_size % num_attention_heads != 0 :
            raise ValueError(
                "the hidden size %d is not a multiple of the number of attention heads"
                "%d" % (hidden_size, num_attention_heads)
            )

        self.num_attention_heads = num_attention_heads
        self.attention_head_size = int(hidden_size / num_attention_heads)
        self.all_head_size = hidden_size

        self.key_layer = nn.Linear(input_size, hidden_size)
        self.query_layer = nn.Linear(input_size, hidden_size)
        self.value_layer = nn.Linear(input_size, hidden_size)

    def trans_to_multiple_heads(self, x):
        new_size = x.size()[ : -1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(new_size)
        return x.permute(0, 2, 1, 3)

    def forward(self, x):
        key = self.key_layer(x)
        query = self.query_layer(x)
        value = self.value_layer(x)

        key_heads = self.trans_to_multiple_heads(key)
        query_heads = self.trans_to_multiple_heads(query)
        value_heads = self.trans_to_multiple_heads(value)

        attention_scores = torch.matmul(query_heads, key_heads.permute(0, 1, 3, 2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)

        attention_probs = F.softmax(attention_scores, dim = -1)

        context = torch.matmul(attention_probs, value_heads)
        context = context.permute(0, 2, 1, 3).contiguous()
        new_size = context.size()[ : -2] + (self.all_head_size , )
        context = context.view(*new_size)
        return context

测试

features = torch.rand((32, 20, 10))
attention = selfAttention(2, 10, 20)
result = attention.forward(features)
print(result.shape) # torch.Size([32, 20, 20])
目录
相关文章
|
2天前
|
编解码 Java 程序员
写代码还有专业的编程显示器?
写代码已经十个年头了, 一直都是习惯直接用一台Mac电脑写代码 偶尔接一个显示器, 但是可能因为公司配的显示器不怎么样, 还要接转接头 搞得桌面杂乱无章,分辨率也低,感觉屏幕还是Mac自带的看着舒服
|
3天前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1540 5
|
1月前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
7天前
|
人工智能 Rust Java
10月更文挑战赛火热启动,坚持热爱坚持创作!
开发者社区10月更文挑战,寻找热爱技术内容创作的你,欢迎来创作!
578 22
|
3天前
|
存储 SQL 关系型数据库
彻底搞懂InnoDB的MVCC多版本并发控制
本文详细介绍了InnoDB存储引擎中的两种并发控制方法:MVCC(多版本并发控制)和LBCC(基于锁的并发控制)。MVCC通过记录版本信息和使用快照读取机制,实现了高并发下的读写操作,而LBCC则通过加锁机制控制并发访问。文章深入探讨了MVCC的工作原理,包括插入、删除、修改流程及查询过程中的快照读取机制。通过多个案例演示了不同隔离级别下MVCC的具体表现,并解释了事务ID的分配和管理方式。最后,对比了四种隔离级别的性能特点,帮助读者理解如何根据具体需求选择合适的隔离级别以优化数据库性能。
201 3
|
10天前
|
JSON 自然语言处理 数据管理
阿里云百炼产品月刊【2024年9月】
阿里云百炼产品月刊【2024年9月】,涵盖本月产品和功能发布、活动,应用实践等内容,帮助您快速了解阿里云百炼产品的最新动态。
阿里云百炼产品月刊【2024年9月】
|
10天前
|
Linux 虚拟化 开发者
一键将CentOs的yum源更换为国内阿里yum源
一键将CentOs的yum源更换为国内阿里yum源
578 5
|
23天前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
6天前
|
XML 安全 Java
【Maven】依赖管理,Maven仓库,Maven核心功能
【Maven】依赖管理,Maven仓库,Maven核心功能
233 3
|
9天前
|
存储 人工智能 搜索推荐
数据治理,是时候打破刻板印象了
瓴羊智能数据建设与治理产品Datapin全面升级,可演进扩展的数据架构体系为企业数据治理预留发展空间,推出敏捷版用以解决企业数据量不大但需构建数据的场景问题,基于大模型打造的DataAgent更是为企业用好数据资产提供了便利。
327 2