深度学习笔记(六):如何运用梯度下降法来解决线性回归问题

简介: 这篇文章介绍了如何使用梯度下降法解决线性回归问题,包括梯度下降法的原理、线性回归的基本概念和具体的Python代码实现。

1.梯度下降法

梯度下降法是一种常用的迭代方法,其目的是让输入向量找到一个合适的迭代方向,使得输出值能达到局部最小值。在拟合线性回归方程时,我们把损失函数视为以参数向量为输入的函数,找到其梯度下降的方向并进行迭代,就能找到最优的参数值。

我们看下面这个二维平面:
在这里插入图片描述
也就是说我们要运用梯度下降法顺利且快速的找到全局最优解,也就是最低的地方,我们运用的公式如下:

在这里插入图片描述
W1为上一层的权值,α为学习率,后面这个比值是y对w进行求导之和,通过我后面给的代码可以很清楚的看出来。
这时候最关键的地方就是学习率的大小了,要了解学习率的大小对于找全局最优解的影响可以看我上一篇博客:
https://developer.aliyun.com/article/1624220
然后通过调整学习率可以有效的找到我们全局最优解,也就是下图:
在这里插入图片描述
找到全局最优之后就可以得到我们最优的w和b,从而得到最优的loss(衡量预测值和真实值的差异)。由于导数(对应的斜率)是矢量,也就是y对w的比值是有正负的,所以如果学习率得当,那么当小球(假装从山顶向下找最优解的是小球)达到最底端之后就会一直在这个附近徘徊,也就是我们要找的最优解,但是这里很有可能不是全局最优,而是局部最优,就好似山坡上有许多坑,从小球来看它并不会知道哪个是最低的。

这时候我们就会考虑如何才能够避免局部最优点的困扰

  • 方法1.不同的初始权值进行训练,选择最好的结果。假定误差曲面是个坑坑洼洼的曲面,我们尝试第一次降落到随机的起点,然后再开始摸索前进,也许会有运气好的一次,能够不落在某个小坑附近,多次尝试权重,可能会找到好的全局点。

  • 方法2.使用随机梯度下降代替真正的梯度下降。可以这样理解,每次针对单个数据样例进行摸索前进时,本质上是在一个样例形成的误差曲面上摸索前进,而每个样例的曲面大体类似,又不尽相同,当你掉入一个坑里时,往往能被别的曲面拽出来。

  • 方法3.模拟退火法(允许在当前点的一定范围内寻找其他点,选择最优的)

2.线性回归问题

所谓的线性回归,也就是y和x的关系是线性的,就像我们平常见到的y=ax+b
在神经网络中表示的是y=wx+b,如果是多特征,我们的y就可以表示为:y=b+w1x1+w2x2+w3x3…+wnxn,其中n代表特征的个数。

3.具体代码

搞懂这个代码对于计算loss和理解梯度下降帮助很大的,请仔细欣赏。

import numpy as np

"""
主要为3步,
1.计算loss,通过定义了一个计算总损失的函数、
2.计算和更新梯度,定义了一个用于更新w和b的函数,
3.循环迭代,还有一个用于进行迭代的函数,这个迭代的函数会不断去执行更新w和b的函数,
然后把得到的w和b传入到总损失的函数去计算,最终得到一个最适宜的损失,损失函数的求解方法就是通过wx+b-y得到,
也就是说下一层的输入值减去上一层的输出值得到的差值就叫做loss。
"""
# 计算总loss
def compute_loss(w_start,b_start,points):
    w = w_start
    b = b_start
    n = float(len(points))
    totleloss = 0
    for i in range(len(points)):
        x = points[i,0]
        y = points[i,1]
        totleloss += ((w*x+b)-y)**2
    return totleloss/n

# 通过梯度下降法去更新w和b
def gradient_descent_step(w_start,b_start,points,lr):
    n = len(points)
    for i in range(n):
        x = points[i,0]
        y = points[i,1]
        w_gradient = (2/n)*((w_start*x+b_start)-y)*x
        b_gradient = (2/n)*((w_start*x+b_start)-y)
    w_new = w_start - lr * w_gradient
    b_new = b_start - lr * b_gradient
    return w_new,b_new

# 迭代训练,更新
def gradient_runner(w_start,b_start,points,lr,num):
    w = w_start
    b = b_start
    points = np.array(points)
    # print(points)
    for i in range(num):
        w,b = gradient_descent_step(w,b,points,lr)
    return w,b

def run():
    initial_w = 0
    initial_b = 0
    num = 1000
    lr = 0.0001
    points = np.genfromtxt('data.csv',delimiter=',')
    print('Start gradient descent at w = {0},b = {1},loss = {2}'.format(initial_w,initial_b,compute_loss(initial_w,initial_b,points)))
    print('running................')
    w,b=gradient_runner(initial_w,initial_b,points,lr,num)
    print('after {0} iterations :w = {1},b = {2},loss = {3}'.format(num,w,b,compute_loss(w,b,points)))

if __name__ == '__main__':
    run()

运行结果:
在这里插入图片描述
在迭代次数为1000和学习率为0.0001的时候loss能达到一个最小值,相比以前的loss好了太多了,w和b也找到了最优值。

学习不止是一种能力 更是一种艺术

目录
相关文章
|
1天前
|
机器学习/深度学习 算法
深度学习中的自适应抱团梯度下降法
【10月更文挑战第7天】 本文探讨了深度学习中一种新的优化算法——自适应抱团梯度下降法,它结合了传统的梯度下降法与现代的自适应方法。通过引入动态学习率调整和抱团策略,该方法在处理复杂网络结构时展现了更高的效率和准确性。本文详细介绍了算法的原理、实现步骤以及在实际应用中的表现,旨在为深度学习领域提供一种创新且有效的优化手段。
|
2天前
|
机器学习/深度学习 vr&ar
深度学习笔记(十):深度学习评估指标
关于深度学习评估指标的全面介绍,涵盖了专业术语解释、一级和二级指标,以及各种深度学习模型的性能评估方法。
7 0
深度学习笔记(十):深度学习评估指标
|
2天前
|
机器学习/深度学习 Python
深度学习笔记(九):神经网络剪枝(Neural Network Pruning)详细介绍
神经网络剪枝是一种通过移除不重要的权重来减小模型大小并提高效率的技术,同时尽量保持模型性能。
8 0
深度学习笔记(九):神经网络剪枝(Neural Network Pruning)详细介绍
|
1天前
|
机器学习/深度学习 编解码 计算机视觉
深度学习笔记(十一):各种特征金字塔合集
这篇文章详细介绍了特征金字塔网络(FPN)及其变体PAN和BiFPN在深度学习目标检测中的应用,包括它们的结构、特点和代码实现。
5 0
|
2天前
|
机器学习/深度学习 数据可视化 Windows
深度学习笔记(七):如何用Mxnet来将神经网络可视化
这篇文章介绍了如何使用Mxnet框架来实现神经网络的可视化,包括环境依赖的安装、具体的代码实现以及运行结果的展示。
9 0
|
3天前
|
机器学习/深度学习 边缘计算 人工智能
探讨深度学习在图像识别中的应用及优化策略
【10月更文挑战第5天】探讨深度学习在图像识别中的应用及优化策略
14 1
|
8天前
|
机器学习/深度学习 人工智能 数据可视化
深度学习在图像识别中的应用与挑战
本文将深入探讨深度学习技术在图像识别领域的应用,并揭示其背后的原理和面临的挑战。我们将通过代码示例来展示如何利用深度学习进行图像识别,并讨论可能遇到的问题和解决方案。
33 3
|
3天前
|
机器学习/深度学习 存储 数据处理
深度学习在图像识别中的应用与挑战
【10月更文挑战第5天】 本文旨在探讨深度学习技术在图像识别领域的应用及其所面临的挑战。随着深度学习技术的飞速发展,其在图像识别中的应用日益广泛,不仅推动了相关技术的革新,也带来了新的挑战。本文首先介绍了深度学习的基本原理和常见模型,然后详细探讨了卷积神经网络(CNN)在图像识别中的具体应用,包括图像分类、目标检测等任务。接着,分析了当前深度学习在图像识别中面临的主要挑战,如数据标注问题、模型泛化能力、计算资源需求等。最后,提出了一些应对这些挑战的可能方向和策略。通过综合分析,本文希望为深度学习在图像识别领域的进一步研究和应用提供参考和启示。
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在图像识别中的应用与挑战
【10月更文挑战第5天】本文将深入探讨深度学习技术在图像识别领域的应用和面临的挑战。我们将从基础的神经网络模型出发,逐步介绍卷积神经网络(CNN)的原理和结构,并通过代码示例展示其在图像分类任务中的实际应用。同时,我们也将讨论深度学习在图像识别中遇到的一些常见问题和解决方案,以及未来的发展方向。
14 4
|
1天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第7天】本文将深入探讨卷积神经网络(CNN)的基本原理,以及它如何在图像识别领域中大放异彩。我们将从CNN的核心组件出发,逐步解析其工作原理,并通过一个实际的代码示例,展示如何利用Python和深度学习框架实现一个简单的图像分类模型。文章旨在为初学者提供一个清晰的入门路径,同时为有经验的开发者提供一些深入理解的视角。