基于粒子群算法的分布式电源配电网重构优化matlab仿真

简介: 本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。

1.课题概述
基于粒子群算法的分布式电源配电网重构优化。通过Matlab仿真,对比优化前后

1.节点的电压值
2.线路的损耗,这里计算网损
3.负荷均衡度
4.电压偏离
5.线路的传输功率
6.重构后和重构前开关变化状态

2.系统仿真结果

0dd9deba8f3dc84ec701654f842e2455_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg


  15.0000 + 0.0000i
  14.9761 + 0.0002i
  14.8564 + 0.0014i
  14.8396 + 0.0000i
  14.8257 - 0.0006i
  14.7965 - 0.0093i
  14.7898 - 0.0164i
  14.3003 - 0.3734i
  14.2857 - 0.3291i
  14.2937 - 0.3099i
  14.2968 - 0.3073i
  14.3781 - 0.4659i
  14.3691 - 0.4669i
  14.2306 - 0.2775i
  14.2385 - 0.2765i
  14.2389 - 0.2553i
  14.2331 - 0.2024i
  14.2325 - 0.1839i
  14.9747 - 0.0003i
  14.4088 - 0.4626i
  14.3907 - 0.4526i
  14.4048 - 0.4598i
  14.7643 - 0.0073i
  14.5812 - 0.0374i
  14.4344 - 0.0587i
  14.7945 - 0.0095i
  14.7931 - 0.0096i
  14.3626 - 0.0771i
  14.3669 - 0.0753i
  14.3191 - 0.0713i
  14.2603 - 0.1246i
  14.2465 - 0.1425i
  14.2405 - 0.1634i

2.线路的损耗,这里计算网损
PLoss0 =

  139.9155
PLoss1 =

   56.7952

损耗降低百分比:

ans =

   59.4075

3.负荷均衡度
ans =

    0.0196

4.电压偏离
ans =

   27.8995

5.线路的传输功率
Powers =

   22.5049
   22.5231
   22.5006
   22.5004
   22.5006
   22.5000
   22.9657
   22.5014
   22.5003
   22.5001
   22.5765
   22.5000
   22.5373
   22.5001
   22.5004
   22.5008
   22.5003
   22.5000
   22.6966
   22.5004
   22.5001
   22.5129
   22.5236
   22.5152
   22.5000
   22.5000
   22.6011
   22.5000
   22.5036
   22.5033
   22.5007
   22.5004
   22.5036
   22.5012
   22.5002
   22.5005
   22.5048

6.重构后和重构前开关变化状态
Switch0 =

     7     1     3     2    16


Switch1 =

     2     4     4     4    15


swicths =

     2     4     4     4    15
     3     5     5     5    16

3.核心程序与模型
版本:MATLAB2017B

plot(objs,'linewidth',2);
xlabel('迭代次数');
ylabel('适应度值');
grid on


%1、节点的电压值
Node_volgates{indxmin2}
%2、线路的损耗,这里计算网损
%重构前
PLoss0 = Loss0(indxmin_,:) 
%重构后
PLoss1 = min(Loss1)
disp('损耗降低百分比:');
100*abs(PLoss0-PLoss1)/PLoss0
%负荷均衡度,这里均衡采用了方差来计算,值越小,均衡度越高
fobj2(indxmin)

%电压偏离
fobj1(indxmin)



%3、线路的传输功率
case33;
Node_voltage = Node_volgates{indxmin2};
for iii = 1:length(Matrix1)
    Powers(iii,1) =  abs((abs(Node_voltage(Matrix1(iii,2))-Node_voltage(Matrix1(iii,3))))^2/(Matrix1(iii,4))+Rz); 
end
Powers
%4、重构后和重构前开关变化状态
%重构前
Switch0 = Best_pso_(indxmin_,:) 
%重构后
Switch1 = Best_pso(indxmin2,:) 

%5、如果出现故障,及一条线路断开之后开关变化状态
%这里进行断开支路测试
for i = 1:Swicth
    swicths(:,i) = [Matrix1(Switch1(i),2:3)]';
end
swicths
02_054m

4.系统原理简介
分布式电源配电网重构(Distribution Network Reconfiguration,DNR)是一个重要的电力系统优化问题,旨在通过改变配电网中的开关状态,以最小化网络损耗、提高供电可靠性和优化分布式电源的接入效益。粒子群优化算法(Particle Swarm Optimization, PSO)作为一种启发式全局优化方法,被广泛应用于解决此类复杂优化问题。

4.1基本PSO算法原理
在PSO中,每个粒子表示配电网重构的一种可能解(即一种开关状态组合),其位置矢量X_i代表第i个粒子所对应的解空间中的解。每个粒子具有速度矢量V_i,用于更新其位置:

ae396ab07e64c292c0257c02ee72f007_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

w是惯性权重,用于平衡全局搜索和局部搜索。
c_1 和 c_2 是加速常数,控制个体最优解(P_i)和全局最优解(G_i)对当前粒子的影响。
r_1 和 r_2 是随机变量,在[0, 1]之间,用于引入随机性。
P_i 是粒子i的历史最优位置(对应最低目标函数值的开关状态组合)。
G 是整个种群中的全局最优位置(所有粒子经历过的最优开关状态组合)。
4.2配电网重构的目标函数
在基于粒子群算法的分布式电源配电网重构优化问题中,目标函数通常结合了多个评价指标以达到综合最优。这里主要考虑以下三个关键因素:

   节点电压偏离(Voltage Deviation) 节点电压偏离反映了配电网络重构后各节点实际电压与额定电压之间的差异。其数学表示通常采用均方误差的形式:

67249aa810931ca0d69f3e6adc7650ef_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,Ui 是第 i 个节点的实际电压,Uref 是参考电压或额定电压,N 是总节点数。

   线路负荷均衡度(Load Balance Index) 线路负荷均衡度衡量的是整个配电网内各线路负载分布的均匀程度。一种可能的度量方法是计算所有线路负荷与其平均值的标准差:

d134092dabfeae40ae999ddccbada9d0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,Pj 表示第 j 条线路的功率负荷,ˉPˉ 是所有线路负荷的平均值,M 是线路总数。

    线路损耗(Line Losses) 线路损耗包括电阻损耗和电抗损耗,在考虑分布式电源接入的情况下,需要根据重构后的网络拓扑结构和运行状态计算总的线路损耗:

2445229a3653a7913783bcf7a3980c34_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

这里,Rj 和Xj 分别为第 j 条线路的电阻和感抗,Ij 是通过该线路的电流。

将上述三个指标整合成一个复合目标函数,可以采用加权和的方式表达:

e570322bcdc849cb8a8c6c92bbb53270_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   粒子群算法则用于求解此复合目标函数的最小化问题,通过不断迭代更新每个粒子(即潜在的网络重构方案)的位置和速度,最终找到一组最优的开关状态组合。
相关文章
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
22天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
1天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
27天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
13天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
21天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
23天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
22天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。