大数据-137 - ClickHouse 集群 表引擎详解2 - MergeTree 存储结构 一级索引 跳数索引

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据-137 - ClickHouse 集群 表引擎详解2 - MergeTree 存储结构 一级索引 跳数索引

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(已更完)

ClickHouse(正在更新···)

章节内容

上节我们完成了如下的内容:


表引擎详解 介绍

日志部分

Log部分

Memory部分

Merge部分

MergeTree

ClickHouse中最强大的表引擎当属 MergeTree(合并树)引擎及该系列(*MergeTree)中的其他引擎。

MergeTree 引擎系列的基本理念如下,当你有巨量数据要插入到表中,你要高效的一批批写入数据片段,并希望这些数据片段在后台按照一定规则合并,相比在插入时不断修改(重写)数据进存储,这种策略会高效很多。


存储结构

创建新表

CREATE TABLE mt_table(date Date, id UInt8, name String) 
ENGINE = MergeTree PARTITION BY toYYYYMM(date) ORDER BY id;

CREATE TABLE mt_table3 (
  `date` Date,
  `id` UInt8,
  `name` String
) ENGINE = MergeTree PARTITION BY toYYYYMM(date) ORDER BY id;

执行的结果如下图所示:

插入数据

INSERT INTO mt_table VALUES ('2024-07-31', 1, 'wzk');
INSERT INTO mt_table VALUES ('2024-07-30', 2, 'icu');
INSERT INTO mt_table VALUES ('2024-07-29', 3, 'wzkicu');

执行结果如下图所示:

查看目录

cd /var/lib/clickhouse/data/default/mt_table
ls

执行结果如下图所示:

我们随便进入一个目录,可以看到:

  • bin 是按列保存数据的文件
  • mrk 保存块偏移量
  • primary.idx 保存主键索引

存储结构

.
├── 202407_1_1_0
│   ├── checksums.txt
│   ├── columns.txt
│   ├── count.txt
│   ├── data.bin
│   ├── data.mrk3
│   ├── default_compression_codec.txt
│   ├── minmax_date.idx
│   ├── partition.dat
│   └── primary.idx
├── 202407_2_2_0
│   ├── checksums.txt
│   ├── columns.txt
│   ├── count.txt
│   ├── data.bin
│   ├── data.mrk3
│   ├── default_compression_codec.txt
│   ├── minmax_date.idx
│   ├── partition.dat
│   └── primary.idx
├── 202407_3_3_0
│   ├── checksums.txt
│   ├── columns.txt
│   ├── count.txt
│   ├── data.bin
│   ├── data.mrk3
│   ├── default_compression_codec.txt
│   ├── minmax_date.idx
│   ├── partition.dat
│   └── primary.idx
├── detached
└── format_version.txt

执行结果如下图所示:

checknums.txt 二进制校验文件,保存了余下文件的大小size和size的hash值,用于快速校验文件的完整和正确性

columns.txt 明文的列信息

date.bin 压缩格式(默认LZ4)的数据文件,保存了原始数据,以列名 bin 命名。

date.mrk2 使用了自适应大小的索引间隔

primary.idx 二进制一级索引文件,在建表的时候通过 order by 或者 primary key 声明稀疏索引。

数据分区

数据是以分区目录的形式组织的,每个分区独立分开存储。这种形式,在数据查询的时候,可以有效的跳过无用的数据文件。


分区规则

分区键的取值,生成分区ID,分区根据ID决定,根据分区键的数据类型不同,分区ID的生成目前有四种规则:


不指定分键

使用整型

使用日期类型 toYYYYMM(date)

使用其他类型

数据在写入的时候,会按照分区ID落入对应的分区。

分区目录生成

BlockNum 是一个全局整型,从1开始,每当新创建一个分区目录,此数字就累加1。

MinBlockNum:最小数据块编号

MaxBlockNum:最大数据块编号

对于一个新的分区,MinBlockNum和MaxBlockNum的值是相同的

分区目录合并

MergeTree 的分区目录在数据写入过程中被创建,不同的批次写入数据属于同一分区,也会生成不同的目录,在之后某个时刻再合并(写入后10-15分钟),合并后的旧分区目录默认8分钟后删除。


同一个分区的多个目录合并以后得命名规则:


MinBlockNum:取同一分区中MinBlockNum值最小的

MaxBlockNum:取同一分区中MaxBlockNum最大的

Level:取同一分区最大的Level值+1

一级索引

稀疏索引

文件:primary.idx

MergeTree的主键使用PrimaryKey定义,主键定义之后,MergeTree会根据index_granularity间隔(默认8192)为数据生成一级索引并保存至primary.idx中,这种方式就是稀疏索引。

简化形式:通过 ORDER BY 指代 主键


primary.idx 文件的一级索引采用稀疏索引。


稠密索引:每一行索引标记对应一行具体的数据记录

稀疏索引:每一行索引标记对应一段数据记录(默认索引粒度是8192)

稀疏索引占用空间小,所以primary.idx内的索引数据常驻内存,取用速度快。


生成规则

primary.idx文件,由于稀疏索引,所以MergeTree要间隔index_granularity行数据才会生成一个索引记录,其他索引值会根据声明的主键字段获取。


查询过程

索引是如何工作的?对primary.idx文件的查询过程


MarkRange: 一小段数据区间,按照 index_granularity的间隔粒度,将一段完整的数据划分成多个小的数据段,小的数据段就是MarkRange

MarkRange与索引编号对应

小案例:


200行数据

index_granularity大小为5

主键ID为int,取值从0开始

共200行数据/5 = 40个MarkRange

假设索引查询 where Id = 3

  • 第一步:形成区间格式 [3,3]
  • 第二步:进行交集 [3,3] ∩ [0, 199]
    以MarkRange的步长大于8分块,进行剪枝:
  • 第三步:合并, MarkRange(start0, end20)

在ClickHouse中,MergeTree引擎表的索引列在建表使用ORDER BY语法来指定。

而在官方中,用了下面一副图来说明。

这张图示出了以 CounterID、Date两列为索引列的情况,即先以CounterID为主要关键字排序,再以Date为次要关键字排序,最后用两列的组合作为索引键。Marks与MarkNumbers就是索引标记,且Marks之间的间隔就由建表时的索引粒度参数index_granularity来制定,默认是8192。


在 ClickHouse 之父Alexey Milovidov分享的PPT中,有更加详细的图示:

这样,每一列都通过ORDER BY列进行了索引,查询时,先查找到数据所在的parts,再通过mrk2文件确定bin文件中数据的范围即可。

不过,ClickHouse的稀疏索引与Kafka的稀疏索引不同,可以由用户自由组合多列,因此也要格外注意不要加入太多索引列,防止索引数据过于稀疏,增大存储和查找成本。另外,基数太小(即区分度太低)的列不适合做索引列,因为很有可能横跨多个mark值仍然相同,没有索引的意义了。


跳数索引

index_granularity 定义了数据的粒度

granularity定义了聚合信息汇总的粒度

granularity定义了一行跳数索引能够跳过多少个index_granularity区间的数据

可用类型

minmax存储指定表达式的极值(如果表达式是tuple,则存储tuple中每个元素的极值),这些信息用于跳过数据块,类似主键

set(max_rows)存储指定表达式的唯一值(不超过max_rows个,max_rows=0则表示无限制)。这些信息可以用于检查 WHERE 表达式是否满足某个数据块

ngrambf_v1 存储包含数据块中所有N元短语的布隆过滤器。只可用于字符串上,用于优化equals、like和in表达式的性能。

tokenbf_v1 跟 ngrambf_v1 类似,不同于ngrams 存储字符串指定长度的所有片段,它只存储被非字母数据字符分割的片段。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
3月前
|
消息中间件 分布式计算 关系型数据库
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
74 0
|
2月前
|
存储 算法 固态存储
大数据分区优化存储成本
大数据分区优化存储成本
46 4
|
2月前
|
存储 缓存 大数据
ClickHouse核心概念详解:表引擎与数据模型
【10月更文挑战第26天】在大数据时代,数据处理的速度和效率变得至关重要。ClickHouse,作为一个列式存储数据库系统,以其高效的查询性能和强大的数据处理能力而受到广泛欢迎。本文将从我个人的角度出发,详细介绍ClickHouse的核心概念,特别是其表引擎和数据模型,以及这些特性如何影响数据的存储和查询。
87 1
|
3月前
|
存储 SQL 分布式计算
大数据-142 - ClickHouse 集群 副本和分片 Distributed 附带案例演示
大数据-142 - ClickHouse 集群 副本和分片 Distributed 附带案例演示
350 0
|
3月前
|
SQL 消息中间件 分布式计算
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(一)
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(一)
100 0
|
3月前
|
SQL 大数据
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(二)
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(二)
97 0
|
3月前
|
存储 SQL 分布式计算
大数据-139 - ClickHouse 集群 表引擎详解4 - MergeTree 实测案例 ReplacingMergeTree SummingMergeTree
大数据-139 - ClickHouse 集群 表引擎详解4 - MergeTree 实测案例 ReplacingMergeTree SummingMergeTree
47 0
|
3月前
|
存储 算法 NoSQL
大数据-138 - ClickHouse 集群 表引擎详解3 - MergeTree 存储结构 数据标记 分区 索引 标记 压缩协同
大数据-138 - ClickHouse 集群 表引擎详解3 - MergeTree 存储结构 数据标记 分区 索引 标记 压缩协同
56 0
|
3月前
|
存储 关系型数据库 MySQL
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB区别,适用场景
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景比较
|
30天前
|
SQL Unix OLAP
ClickHouse安装教程:开启你的列式数据库之旅
ClickHouse 是一个高性能的列式数据库管理系统,适用于在线分析处理(OLAP)。本文介绍了 ClickHouse 的基本使用步骤,包括下载二进制文件、安装应用、启动服务器和客户端、创建表、插入数据以及查询新表。还提到了图形客户端 DBeaver 的使用,使操作更加直观。通过这些步骤,用户可以快速上手并利用 ClickHouse 的强大性能进行数据分析。
78 4