大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(正在更新!)

章节内容

上节完成了如下的内容:


Flink 重要角色

TaskManager

ResourceManager

各个组件之间的关系

Sink Task SubTask 等等内容

2e594707a5d55b584249ec3f90c5feb0_e96b213395dc4d1bab574ac0bbcd48e7.png 安装模式

Flink支持多种安装模式:

local(本地):单机模式,一般本地开发调试

Standalone独立模式:Flink自带集群,自己管理资源调度,部分生产环境会这么用

YARN模式:计算资源统一由Hadoop YRAN管理,生产环境大部分是这种

基础环境

基于我们之前的大数据的环境:


JAVA_HOME 之前已经配好了

SSH 免密登录 三台节点之间 之前也配置好了

集群规划

我们对应的机器是:

  • h121 2C4G
  • h122 2C4G
  • h123 2C2G

下载安装

选择的版本是:Flink 1.11.1 版本

https://www.apache.org/dyn/closer.lua/flink/flink-1.11.1/flink-1.11.1-bin-scala_2.12.tgz

你也可以直接使用 wget 下载,目前我们登录到服务器 h121 节点上

cd /opt/software/
wget https://archive.apache.org/dist/flink/flink-1.11.1/flink-1.11.1-bin-scala_2.12.tgz

等待下载完毕:

解压配置:

tar -zxvf flink-1.11.1-bin-scala_2.12.tgz

处理过程如下:

解压完成之后,移动到目录下:

mv flink-1.11.1 ../servers/
cd ../servers/
ls

Standalone模式部署

上述我们已经完成了 h121 服务器节点的配置安装,接下来我们修改配置文件。

Standalone 模式是一种相对简单的 Flink 集群部署方式,适合在拥有固定资源的环境中运行 Flink 应用程序。所有的 Flink 组件(如 JobManager 和 TaskManager)都是手动配置和启动的,没有依赖外部的资源管理系统。


启动与配置

手动启动:在 Standalone 模式下,JobManager 和 TaskManager 需要通过脚本手动启动。可以通过 Flink 提供的启动脚本(如 start-cluster.sh)来启动整个集群,或者单独启动每个组件。

配置文件:Standalone 模式的配置主要通过 flink-conf.yaml 文件进行,配置内容包括 JobManager 和 TaskManager 的数量、内存和 CPU 资源、网络设置等。

flink-conf.yaml

cd /opt/servers/flink-1.11.1/conf
vim flink-conf.yaml

我们修改的内容有这么两处:

jobmanager.rpc.address: h121.wzk.icu
taskmanager.numberOfTaskSlots: 2

修改内容如下所示:

Works

不同的版本可能叫不同的名字,我这里是 works

cd /opt/servers/flink-1.11.1/conf
vim workers

写入如下的内容,我们有三台云节点:

h121.wzk.icu
h122.wzk.icu
h123.wzk.icu

写入的结果如下图所示:

Master

cd /opt/servers/flink-1.11.1/conf
vim masters
• 1
• 2

写入如下的内容:

h121.wzk.icu:8081

写入的结果如下图:

接下篇:https://developer.aliyun.com/article/1622698

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
105 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
79 0
zdl
|
23天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
139 56
|
1月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
58 9
|
1月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
62 1
|
2月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
66 1
|
2月前
|
消息中间件 分布式计算 Kafka
大数据平台的毕业设计02:Spark与实时计算
大数据平台的毕业设计02:Spark与实时计算
103 0
|
2月前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
131 0
|
2月前
|
SQL 大数据 API
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
49 0
|
23天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
180 7