【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(上)

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(上)

学习目标

🍀 了解什么是注意力计算规则以及常见的计算规则.

🍀 了解什么是注意力机制及其作用.

🍀 掌握注意力机制的实现步骤.

🍔 注意力机制介绍

1.1 注意力概念

  • 我们观察事物时,之所以能够快速判断一种事物(当然允许判断是错误的), 是因为我们大脑能够很快把注意力放在事物最具有辨识度的部分从而作出判断,而并非是从头到尾的观察一遍事物后,才能有判断结果. 正是基于这样的理论,就产生了注意力机制.

1.2 注意力计算规则

  • 它需要三个指定的输入Q(query), K(key), V(value), 然后通过计算公式得到注意力的结果, 这个结果代表query在key和value作用下的注意力表示. 当输入的Q=K=V时, 称作自注意力计算规则.
  • Q, K, V的比喻解释:

假如我们有一个问题: 给出一段文本,使用一些关键词对它进行描述!

为了方便统一正确答案,这道题可能预先已经给大家写出了一些关键词作为提示.其中这些给出的提示就可以看作是key, 而整个的文本信息就相当于是query,value的含义则更抽象,可以比作是你看到这段文本信息后,脑子里浮现的答案信息,这里我们又假设大家最开始都不是很聪明,第一次看到这段文本后脑子里基本上浮现的信息就只有提示这些信息,因此key与value基本是相同的,但是随着我们对这个问题的深入理解,通过我们的思考脑子里想起来的东西原来越多,并且能够开始对我们query也就是这段文本,提取关键信息进行表示.  这就是注意力作用的过程, 通过这个过程,我们最终脑子里的value发生了变化,根据提示key生成了query的关键词表示方法,也就是另外一种特征表示方法。

刚刚我们说到key和value一般情况下默认是相同,与query是不同的,这种是我们一般的注意力输入形式,但有一种特殊情况,就是我们query与key和value相同,这种情况我们称为自注意力机制,就如同我们的刚刚的例子, 使用一般注意力机制,是使用不同于给定文本的关键词表示它. 而自注意力机制,需要用给定文本自身来表达自己,也就是说你需要从给定文本中抽取关键词来表述它, 相当于对文本自身的一次特征提取。

1.3 常见的注意力计算规则

  • 将Q,K进行纵轴拼接, 做一次线性变化, 再使用softmax处理获得结果最后与V做张量乘法.

  • 将Q,K进行纵轴拼接, 做一次线性变化后再使用tanh函数激活, 然后再进行内部求和, 最后使用softmax处理获得结果再与V做张量乘法.

  • 将Q与K的转置做点积运算, 然后除以一个缩放系数, 再使用softmax处理获得结果最后与V做张量乘法.

  • 说明:当注意力权重矩阵和V都是三维张量且第一维代表为batch条数时, 则做bmm运算.bmm是一种特殊的张量乘法运算.
  • bmm运算演示:
# 如果参数1形状是(b × n × m), 参数2形状是(b × m × p), 则输出为(b × n × p)
>>> input = torch.randn(10, 3, 4)
>>> mat2 = torch.randn(10, 4, 5)
>>> res = torch.bmm(input, mat2)
>>> res.size()
torch.Size([10, 3, 5])

🍔 什么是注意力机制

  • 注意力机制是注意力计算规则能够应用的深度学习网络的载体, 同时包括一些必要的全连接层以及相关张量处理, 使其与应用网络融为一体. 使用自注意力计算规则的注意力机制称为自注意力机制.
  • 说明: NLP领域中, 当前的注意力机制大多数应用于seq2seq架构, 即编码器和解码器模型.

🍔 注意力机制的作用

  • 在解码器端的注意力机制: 能够根据模型目标有效的聚焦编码器的输出结果, 当其作为解码器的输入时提升效果. 改善以往编码器输出是单一定长张量, 无法存储过多信息的情况.
  • 在编码器端的注意力机制: 主要解决表征问题, 相当于特征提取过程, 得到输入的注意力表示. 一般使用自注意力(self-attention).

注意力机制在网络中实现的图形表示:

【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(下):https://developer.aliyun.com/article/1622672


相关文章
|
4天前
|
机器学习/深度学习 存储 自然语言处理
【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(下)
【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(下)
【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(下)
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习与自然语言处理的最新进展
【10月更文挑战第6天】探索深度学习与自然语言处理的最新进展
6 0
|
2天前
|
机器学习/深度学习 自然语言处理 并行计算
探索深度学习中的Transformer模型及其在自然语言处理中的应用
【10月更文挑战第6天】探索深度学习中的Transformer模型及其在自然语言处理中的应用
10 0
|
3天前
|
机器学习/深度学习 边缘计算 人工智能
探讨深度学习在图像识别中的应用及优化策略
【10月更文挑战第5天】探讨深度学习在图像识别中的应用及优化策略
12 1
|
8天前
|
机器学习/深度学习 人工智能 数据可视化
深度学习在图像识别中的应用与挑战
本文将深入探讨深度学习技术在图像识别领域的应用,并揭示其背后的原理和面临的挑战。我们将通过代码示例来展示如何利用深度学习进行图像识别,并讨论可能遇到的问题和解决方案。
31 3
|
3天前
|
机器学习/深度学习 存储 数据处理
深度学习在图像识别中的应用与挑战
【10月更文挑战第5天】 本文旨在探讨深度学习技术在图像识别领域的应用及其所面临的挑战。随着深度学习技术的飞速发展,其在图像识别中的应用日益广泛,不仅推动了相关技术的革新,也带来了新的挑战。本文首先介绍了深度学习的基本原理和常见模型,然后详细探讨了卷积神经网络(CNN)在图像识别中的具体应用,包括图像分类、目标检测等任务。接着,分析了当前深度学习在图像识别中面临的主要挑战,如数据标注问题、模型泛化能力、计算资源需求等。最后,提出了一些应对这些挑战的可能方向和策略。通过综合分析,本文希望为深度学习在图像识别领域的进一步研究和应用提供参考和启示。
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在图像识别中的应用与挑战
【10月更文挑战第5天】本文将深入探讨深度学习技术在图像识别领域的应用和面临的挑战。我们将从基础的神经网络模型出发,逐步介绍卷积神经网络(CNN)的原理和结构,并通过代码示例展示其在图像分类任务中的实际应用。同时,我们也将讨论深度学习在图像识别中遇到的一些常见问题和解决方案,以及未来的发展方向。
14 4
|
4天前
|
机器学习/深度学习 自动驾驶 算法
深度学习中的图像识别技术及其在自动驾驶中的应用
【10月更文挑战第4天】本文深入探讨了深度学习在图像识别领域的应用,并特别关注其在自动驾驶系统中的关键作用。文章首先介绍了深度学习的基本概念和工作原理,随后通过一个代码示例展示了如何利用深度学习进行图像分类。接着,文章详细讨论了图像识别技术在自动驾驶中的具体应用,包括物体检测、场景理解和决策制定等方面。最后,文章分析了当前自动驾驶技术面临的挑战和未来的发展趋势。
16 4
|
2天前
|
机器学习/深度学习 自然语言处理 搜索推荐
探索深度学习中的注意力机制及其在现代应用中的影响
探索深度学习中的注意力机制及其在现代应用中的影响
10 1
|
6天前
|
机器学习/深度学习 编解码 边缘计算
深度学习在图像处理中的应用与展望##
本文旨在探讨深度学习技术在图像处理领域的应用及其未来发展趋势。通过分析卷积神经网络(CNN)等关键技术,展示了深度学习如何提升图像识别、分类和生成等任务的性能。同时,本文也讨论了当前面临的挑战和未来的研究方向,为相关领域的研究和实践提供参考。 ##