用Python构建动态折线图:实时展示爬取数据的指南

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本文介绍了如何利用Python的爬虫技术从“财富吧”获取中国股市的实时数据,并使用动态折线图展示股价变化。文章详细讲解了如何通过设置代理IP和请求头来绕过反爬机制,确保数据稳定获取。通过示例代码展示了如何使用`requests`和`matplotlib`库实现这一过程,最终生成每秒自动更新的动态股价图。这种方法不仅适用于股市分析,还可广泛应用于其他需要实时监控的数据源,帮助用户快速做出决策。

爬虫代理.png

背景/引言

随着大数据和人工智能的不断发展,实时数据分析变得越来越关键,尤其是在金融市场中。股市数据的实时可视化可以帮助投资者快速做出决策,避免错失良机。Python 凭借其强大的数据处理能力和丰富的可视化库,成为分析和展示实时数据的理想工具。

本文将演示如何通过爬虫技术从财富吧获取中国股市的实时数据,并使用动态折线图展示股价变化。我们还将展示如何使用代理IP和伪装请求等手段,以绕过反爬虫机制。

正文

1. 爬虫技术与反爬机制

爬虫技术广泛用于自动化获取网页数据。然而,为了避免过度爬取导致的服务器负担,很多网站都部署了反爬机制,例如IP限制、验证码验证等。使用代理IP、User-Agent伪装、Cookies等技术可以有效绕过一些反爬机制,从而持续稳定地获取数据。

在本项目中,我们将使用财富吧作为数据源,通过Python编写爬虫定时抓取股市实时数据,并使用matplotlib生成动态折线图。

2. 代理IP与请求头设置

为了稳定地获取股市数据,我们将使用代理IP服务,并通过设置合适的请求头来模拟真实的浏览器行为,避免被检测为爬虫。本文以爬虫代理为例。

代码示例

import requests
import json
import time
import matplotlib.pyplot as plt
from itertools import count
from matplotlib.animation import FuncAnimation

# 代理IP设置 (以亿牛云爬虫代理为例 www.16yun.cn)
proxy = {
   
    'http': 'http://username:password@proxy.16yun.cn:8100',
    'https': 'http://username:password@proxy.16yun.cn:8100'
}

# 请求头设置,包括User-Agent和Cookies
headers = {
   
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
    'Cookie': 'your_cookie_here'  # 需要替换为实际的Cookie
}

# 数据来源:财富吧
url = "https://www.caifub.com/api/stock"  # 替换为实际的财富吧API

# 初始化动态图的数据
x_vals = []
y_vals = []

# 生成数据索引
index = count()

# 爬取股市数据的函数
def get_stock_data():
    try:
        # 使用代理发送请求
        response = requests.get(url, headers=headers, proxies=proxy)
        # 检查响应状态码
        if response.status_code == 200:
            data = response.json()
            # 解析股市数据 (假设返回的是JSON格式)
            stock_price = data['price']  # 需要替换为实际字段
            return stock_price
        else:
            print(f"请求失败,状态码: {response.status_code}")
            return None
    except Exception as e:
        print(f"爬取数据时出错: {e}")
        return None

# 更新折线图的函数
def update_graph(i):
    stock_price = get_stock_data()
    if stock_price is not None:
        x_vals.append(next(index))
        y_vals.append(stock_price)

        plt.cla()
        plt.plot(x_vals, y_vals, label='实时股价')
        plt.xlabel('时间')
        plt.ylabel('价格')
        plt.title('中国股市实时数据')
        plt.legend()

# 使用Matplotlib的FuncAnimation实现动态图
ani = FuncAnimation(plt.gcf(), update_graph, interval=1000)

# 显示图形
plt.tight_layout()
plt.show()

3. 代码解读

  • 代理IP:代码中配置了代理IP,通过代理服务进行连接,避免爬虫的IP被限制。你需要将usernamepasswordproxy_domainproxy_port 替换为实际的代理信息。
  • 请求头设置:通过伪装的User-AgentCookies,模拟浏览器的真实访问行为,以避免触发财富吧的反爬虫策略。
  • 股市数据获取:该示例中,requests.get方法从财富吧公开API获取股市数据,并解析返回的JSON数据,提取股价信息。
  • 动态折线图绘制:使用matplotlibFuncAnimation函数实现实时更新的折线图,显示最新的股市价格。

4. 实时折线图的实现

  • FuncAnimation:通过FuncAnimation不断调用更新函数update_graph,使图表能够每秒刷新一次,动态显示股价。
  • count():使用itertools.count()生成递增的索引,作为时间轴的数据。
  • plt.cla():清空图表的当前绘制,防止数据重复显示,保持画面整洁。

实例

假设我们从财富吧API中抓取某只股票的实时价格,运行上述代码后,将显示股价变化的动态折线图。图形会每秒自动更新,展示最新的股市价格走势。通过这种方式,我们可以对市场进行实时监控,为投资决策提供支持。

结论

通过Python结合爬虫技术和动态折线图,我们可以轻松实现对实时股市数据的可视化展示。本文展示了如何从财富吧获取实时数据,并使用代理IP和伪装技术绕过反爬机制。这种方法不仅适用于股市分析,还可应用于其他需要实时监控的数据源。

实时数据可视化是一种有效的数据分析工具,特别是在金融领域,它能帮助用户快速掌握市场动态,从而更好地做出决策。

相关文章
|
16天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
24天前
|
弹性计算 数据管理 数据库
从零开始构建员工管理系统:Python与SQLite3的完美结合
本文介绍如何使用Python和Tkinter构建一个图形界面的员工管理系统(EMS)。系统包括数据库设计、核心功能实现和图形用户界面创建。主要功能有查询、添加、删除员工信息及统计员工数量。通过本文,你将学会如何结合SQLite数据库进行数据管理,并使用Tkinter创建友好的用户界面。
从零开始构建员工管理系统:Python与SQLite3的完美结合
|
11天前
|
存储 API 数据库
使用Python和Flask构建简单的RESTful API
使用Python和Flask构建简单的RESTful API
|
21天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
46 3
|
21天前
|
开发框架 前端开发 JavaScript
利用Python和Flask构建轻量级Web应用的实战指南
利用Python和Flask构建轻量级Web应用的实战指南
59 2
|
21天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
35 1
|
21天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
39 1
|
21天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
27 1
|
22天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
23天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。