Matplotlib 教程 之 Matplotlib 直方图 3

简介: 使用 Matplotlib 库中的 `hist()` 方法来绘制直方图,包括其基本语法及多个可选参数的详细解释,如 bins、range 和 density 等,并提供了一个结合 Pandas 的实例演示,展示如何生成并自定义直方图,包括设置标题、轴标签等属性以更好地展示数据分布特征。

Matplotlib 教程 之 Matplotlib 直方图 3

Matplotlib 直方图

我们可以使用 pyplot 中的 hist() 方法来绘制直方图。

hist() 方法是 Matplotlib 库中的 pyplot 子库中的一种用于绘制直方图的函数。

hist() 方法可以用于可视化数据的分布情况,例如观察数据的中心趋势、偏态和异常值等。

hist() 方法语法格式如下:

matplotlib.pyplot.hist(x, bins=None, range=None, density=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, **kwargs)

参数说明:

x:表示要绘制直方图的数据,可以是一个一维数组或列表。
bins:可选参数,表示直方图的箱数。默认为10。
range:可选参数,表示直方图的值域范围,可以是一个二元组或列表。默认为None,即使用数据中的最小值和最大值。
density:可选参数,表示是否将直方图归一化。默认为False,即直方图的高度为每个箱子内的样本数,而不是频率或概率密度。
weights:可选参数,表示每个数据点的权重。默认为None。
cumulative:可选参数,表示是否绘制累积分布图。默认为False。
bottom:可选参数,表示直方图的起始高度。默认为None。
histtype:可选参数,表示直方图的类型,可以是'bar'、'barstacked'、'step'、'stepfilled'等。默认为'bar'。
align:可选参数,表示直方图箱子的对齐方式,可以是'left'、'mid'、'right'。默认为'mid'。
orientation:可选参数,表示直方图的方向,可以是'vertical'、'horizontal'。默认为'vertical'。
rwidth:可选参数,表示每个箱子的宽度。默认为None。
log:可选参数,表示是否在y轴上使用对数刻度。默认为False。
color:可选参数,表示直方图的颜色。
label:可选参数,表示直方图的标签。
stacked:可选参数,表示是否堆叠不同的直方图。默认为False。
**kwargs:可选参数,表示其他绘图参数。

结合 Pandas

以下实例我们结合 Pandas 来绘制直方图:

实例

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

使用 NumPy 生成随机数

random_data = np.random.normal(170, 10, 250)

将数据转换为 Pandas DataFrame

dataframe = pd.DataFrame(random_data)

使用 Pandas hist() 方法绘制直方图

dataframe.hist()

设置图表属性

plt.title('Baidu hist() Test')
plt.xlabel('X-Value')
plt.ylabel('Y-Value')

显示图表

plt.show()

目录
相关文章
|
3月前
|
Python
Matplotlib 教程 之 Matplotlib 散点图 6
使用 Matplotlib 库中的 `scatter()` 方法绘制散点图,并详细解释了该方法的参数,包括点的大小(`s`)、颜色(`c`)、样式(`marker`)等。此外,还展示了如何使用 `cmap` 参数设置颜色条,以及提供了一个具体的实例代码,演示了如何利用这些参数创建带有颜色渐变的散点图。
40 0
|
3月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 直方图 1
使用 Matplotlib 库中的 `hist()` 方法来绘制直方图,并详细解释了其语法和各种参数的意义,如箱数 (`bins`)、值域 (`range`)、归一化 (`density`) 等。通过一个实例演示了如何创建一个简单的直方图,包括设置颜色和图表标题、坐标轴标签等属性。
60 3
|
3月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 直方图 2
使用 Matplotlib 的 `hist()` 方法绘制直方图,通过实例展示了如何比较多组数据的分布。`hist()` 方法属于 Matplotlib 的 pyplot 子库,能有效展示数据分布特性,如中心趋势和偏态。示例中通过生成三组正态分布的随机数据并设置参数(如 bins、alpha 和 label),实现了可视化比较。
50 3
|
3月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 直方图 4
使用 Matplotlib 库中的 `hist()` 方法绘制直方图,该方法可用于展示数据分布情况,如中心趋势、偏态及异常值等。通过实例演示了如何设置柱子数量 (`bins` 参数) 并配置图形标题与坐标轴标签。`hist()` 方法接受多个参数以自定义图表样式,包括颜色、方向及是否堆叠等。
34 1
|
3月前
|
Python
Matplotlib 教程 之 Matplotlib 散点图 1
通过设置参数如点的大小(`s`)、颜色(`c`)和样式(`marker`)等,可以定制图表外观。示例展示了如何用两个长度相同的数组分别表示 x 和 y 轴的值来创建基本散点图。
53 12
|
3月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 饼图 3
使用 Matplotlib 的 `pie()` 方法绘制饼图,详细解释了 `pie()` 方法的参数,如 `x`、`labels`、`colors` 和 `autopct` 等,并提供了设置饼图标签和颜色的示例代码。饼图是一种常用的数据可视化图形,用于展示各部分在整体中的比例。`pie()` 方法可返回包含扇形、文本和自动生成文本标签的对象列表。
47 5
|
3月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 饼图 4
使用 Matplotlib 的 `pie()` 方法绘制饼图,展示各部分占比。`pie()` 方法可通过多个参数定制图表样式,如颜色、标签和百分比显示格式等。通过实例演示了如何突出显示特定扇区并格式化百分比输出。
34 4
|
3月前
|
Python
Matplotlib 教程 之 Matplotlib 散点图 5
使用 Matplotlib 的 `scatter()` 方法绘制散点图,并详细解释了该方法的参数,如点的大小(`s`)、颜色(`c`)、样式(`marker`)等。通过一个实例展示了如何利用随机数生成数据点 (`x`, `y`) 及其颜色和面积,并设置了图表的标题。此示例代码展示了散点图的基本绘制方法及其参数配置。
37 2
|
3月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 饼图 1
使用 Matplotlib 库中的 `pyplot` 模块 `pie()` 方法来绘制饼图,并详细解释了 `pie()` 方法的参数,包括数据输入 `x`、扇区间距 `explode`、标签 `labels`、颜色 `colors`、百分比格式 `autopct`、标签距离 `labeldistance`、阴影 `shadow`、半径 `radius`、起始角度 `startangle`、逆时针方向 `counterclock`、扇形属性 `wedgeprops`、文本标签属性 `textprops`、饼图中心位置 `center`
38 1
|
3月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 散点图 7
使用 Matplotlib 的 `scatter()` 方法绘制散点图。该方法接受多个参数,如 x 和 y 数据点、点的大小(s)、颜色(c)和样式(marker)等。通过示例展示了如何利用颜色数组和颜色映射 (`cmap`) 来增强图表的表现力,并使用 `colorbar()` 方法添加颜色条,使数据可视化更加直观。
38 1