LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调

简介: LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调

参考资料

GPT2 FineTuning

OpenAI-GPT2

Kaggle short-jokes 数据集

Why will you need fine-tuning an LLM?

LLMs are generally trained on public data with no specific focus. Fine-tuning is a crucial step that adapts a pre-trained LLM model to a specific task, enhancing the LLM responses significantly. Although text generation is a well-known application of an LLM, the neural network embeddings obtained from the model are equally valuable for various downstream applications.

项目地址

https://huggingface.co/openai-community/gpt2

安装依赖

这边建议独立环境,避免相互影响。可看LLM-01 和 LLM-02 章节中的 Pyenv 的使用

pip install transformers

下载模型

有很多方式下载 HuggingFace的模型:

  • 利用官方提供的 huggingface_hub库 下载
  • 直接下载(比如Git方式)
  • 镜像代理下载(国内,如果没有科学上网的话)
  • 其他···

这里提供一个例子,运行可以自动把模型下载下来

from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
  
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")

直接运行,可以看到如下的效果:

数据下载

项目地址: 参考的项目

数据来自 Kaggle 一个短笑话合集 10MB(压缩后)

下载链接

编写代码

加载数据

class JokesDataset(Dataset):
    def __init__(self, jokes_dataset_path = './'):
        super().__init__()

        short_jokes_path = os.path.join(jokes_dataset_path, 'shortjokes.csv')

        self.joke_list = []
        self.end_of_te xt_token = "<|endoftext|>"

        with open(short_jokes_path) as csv_file:
            csv_reader = csv.reader(csv_file, delimiter=',')

            x = 0
            for row in csv_reader:
                joke_str = f"JOKE:{row[1]}{self.end_of_text_token}"
                self.joke_list.append(joke_str)

    def __len__(self):
        return len(self.joke_list)

    def __getitem__(self, item):
        return self.joke_list[item]

加载模型

# 如果你是默认的 那应该是:openai-community/gpt2
model_path = "./gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_path)
model = GPT2LMHeadModel.from_pretrained(model_path)
model = model.to(device)

训练代码


for epoch in range(EPOCHS):
    
    print(f"EPOCH {epoch} started" + '=' * 30)
    
    for idx,joke in enumerate(joke_loader):
        
        #################### "Fit as many joke sequences into MAX_SEQ_LEN sequence as possible" logic start ####
        joke_tens = torch.tensor(tokenizer.encode(joke[0])).unsqueeze(0).to(device)
        #Skip sample from dataset if it is longer than MAX_SEQ_LEN
        if joke_tens.size()[1] > MAX_SEQ_LEN:
            continue
        
        #The first joke sequence in the sequence
        if not torch.is_tensor(tmp_jokes_tens):
            tmp_jokes_tens = joke_tens
            continue
        else:
            #The next joke does not fit in so we process the sequence and leave the last joke 
            #as the start for next sequence 
            if tmp_jokes_tens.size()[1] + joke_tens.size()[1] > MAX_SEQ_LEN:
                work_jokes_tens = tmp_jokes_tens
                tmp_jokes_tens = joke_tens
            else:
                #Add the joke to sequence, continue and try to add more
                tmp_jokes_tens = torch.cat([tmp_jokes_tens, joke_tens[:,1:]], dim=1)
                continue
        ################## Sequence ready, process it trough the model ##################
            
        outputs = model(work_jokes_tens, labels=work_jokes_tens)
        loss, logits = outputs[:2]                        
        loss.backward()
        sum_loss = sum_loss + loss.detach().data
                       
        proc_seq_count = proc_seq_count + 1
        if proc_seq_count == BATCH_SIZE:
            proc_seq_count = 0    
            batch_count += 1
            optimizer.step()
            scheduler.step() 
            optimizer.zero_grad()
            model.zero_grad()

        if batch_count == 100:
            print(f"sum loss {sum_loss}")
            batch_count = 0
            sum_loss = 0.0
    
    # Store the model after each epoch to compare the performance of them
    torch.save(model.state_dict(), os.path.join(models_folder, f"gpt2_medium_joker_{epoch}.pt"))

保存目录

models_folder = "trained_models"
if not os.path.exists(models_folder):
    os.mkdir(models_folder)

完整代码

完整的代码如下

import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import numpy as np
from torch.utils.data import Dataset, DataLoader
from transformers import AdamW, get_linear_schedule_with_warmup
import os
import json
import csv

import logging
logging.getLogger().setLevel(logging.CRITICAL)

import warnings
warnings.filterwarnings('ignore')


class JokesDataset(Dataset):
    def __init__(self, jokes_dataset_path = './'):
        super().__init__()

        short_jokes_path = os.path.join(jokes_dataset_path, 'shortjokes.csv')

        self.joke_list = []
        self.end_of_te xt_token = "<|endoftext|>"

        with open(short_jokes_path) as csv_file:
            csv_reader = csv.reader(csv_file, delimiter=',')

            x = 0
            for row in csv_reader:
                joke_str = f"JOKE:{row[1]}{self.end_of_text_token}"
                self.joke_list.append(joke_str)

    def __len__(self):
        return len(self.joke_list)

    def __getitem__(self, item):
        return self.joke_list[item]


device = 'mps'
if torch.cuda.is_available():
    device = 'cuda'

model_path = "./gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_path)
model = GPT2LMHeadModel.from_pretrained(model_path)
model = model.to(device)


dataset = JokesDataset()
joke_loader = DataLoader(dataset, batch_size=1, shuffle=True)

BATCH_SIZE = 16
EPOCHS = 2
LEARNING_RATE = 3e-5
WARMUP_STEPS = 5000
MAX_SEQ_LEN = 400

model.train()
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=WARMUP_STEPS, num_training_steps = -1)
proc_seq_count = 0
sum_loss = 0.0
batch_count = 0

tmp_jokes_tens = None
models_folder = "trained_models"
if not os.path.exists(models_folder):
    os.mkdir(models_folder)

for epoch in range(EPOCHS):
    
    print(f"EPOCH {epoch} started" + '=' * 30)
    
    for idx,joke in enumerate(joke_loader):
        
        #################### "Fit as many joke sequences into MAX_SEQ_LEN sequence as possible" logic start ####
        joke_tens = torch.tensor(tokenizer.encode(joke[0])).unsqueeze(0).to(device)
        #Skip sample from dataset if it is longer than MAX_SEQ_LEN
        if joke_tens.size()[1] > MAX_SEQ_LEN:
            continue
        
        #The first joke sequence in the sequence
        if not torch.is_tensor(tmp_jokes_tens):
            tmp_jokes_tens = joke_tens
            continue
        else:
            #The next joke does not fit in so we process the sequence and leave the last joke 
            #as the start for next sequence 
            if tmp_jokes_tens.size()[1] + joke_tens.size()[1] > MAX_SEQ_LEN:
                work_jokes_tens = tmp_jokes_tens
                tmp_jokes_tens = joke_tens
            else:
                #Add the joke to sequence, continue and try to add more
                tmp_jokes_tens = torch.cat([tmp_jokes_tens, joke_tens[:,1:]], dim=1)
                continue
        ################## Sequence ready, process it trough the model ##################
            
        outputs = model(work_jokes_tens, labels=work_jokes_tens)
        loss, logits = outputs[:2]                        
        loss.backward()
        sum_loss = sum_loss + loss.detach().data
                       
        proc_seq_count = proc_seq_count + 1
        if proc_seq_count == BATCH_SIZE:
            proc_seq_count = 0    
            batch_count += 1
            optimizer.step()
            scheduler.step() 
            optimizer.zero_grad()
            model.zero_grad()

        if batch_count == 100:
            print(f"sum loss {sum_loss}")
            batch_count = 0
            sum_loss = 0.0
    
    # Store the model after each epoch to compare the performance of them
    torch.save(model.state_dict(), os.path.join(models_folder, f"gpt2_medium_joker_{epoch}.pt"))

运行代码

python fine.py
• 1

执行之后,观察显卡的情况,大致占用4.6GB的显存(虽然我这里是3090 24GB的显卡,小显卡也可以正常运行)

训练过程会打印 LOSS

训练结束

经过漫长等待···

测试结果

原始模型

编写几行代码,简单测试一下:

from transformers import pipeline,GPT2LMHeadModel, GPT2Tokenizer
  
model_path = "openai-community/gpt2"
model = GPT2LMHeadModel.from_pretrained(model_path)
tokenizer = GPT2Tokenizer.from_pretrained(model_path)

text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer)

texts = text_generator("Once upon a time ", max_length=50, num_return_sequences=1)
for text in texts:
    print("========================")
    print(text["generated_text"])

运行输出:

Once upon a time 『My Name is』 I'll call myself a boy. I won't reveal my true name.

微调模型

微调之后,效果就变了:

import torch
from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer

model_path = "openai-community/gpt2"
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

model = GPT2LMHeadModel.from_pretrained(model_path).to(device)
tokenizer = GPT2Tokenizer.from_pretrained(model_path)

model.load_state_dict(torch.load('./trained_models/gpt2_medium_joker_9.pt', map_location='cuda:0'))
model.eval()

text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
texts = text_generator("Once upon a time ", max_length=50, num_return_sequences=1)
print("===================")
for text in texts:
    print(text["generated_text"])

测试第一次:

Once upon a time  someone in England tried to insult me by saying, "I'm Scottish."

附带翻译:

从前,有人在英格兰试图侮辱我,说:“我是苏格兰人。”笑点在于暗示苏格兰人与英格兰人有种族或地域上的不同,但实际上这种“侮辱”反而使苏格兰人自豪。

测试第二次:

Once upon a time  someone like that was  doing something wrong.  When I went to dinner


附带翻译:

从前,有个像那个人那样做错事的人。当我和他们一起吃饭时,我第一件事就是把食物掉在地上,然后引起了一场火灾。笑点在于出乎意料的行为,以及食物掉在地上导致火灾这种离奇的情节,使整个场景变得荒诞有趣。

目录
相关文章
|
20天前
|
机器学习/深度学习 自然语言处理 PyTorch
LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势
近年来,大型语言模型(LLMs)在自然语言处理领域取得显著进展,研究人员开始探索将其应用于时间序列预测。Jin等人提出了LLM-Mixer框架,通过多尺度时间序列分解和预训练的LLMs,有效捕捉时间序列数据中的短期波动和长期趋势,提高了预测精度。实验结果显示,LLM-Mixer在多个基准数据集上优于现有方法,展示了其在时间序列预测任务中的巨大潜力。
46 3
LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势
|
16天前
|
机器学习/深度学习 弹性计算 人工智能
大模型进阶微调篇(三):微调GPT2大模型实战
本文详细介绍了如何在普通个人电脑上微调GPT2大模型,包括环境配置、代码实现和技术要点。通过合理设置训练参数和优化代码,即使在无独显的设备上也能完成微调,耗时约14小时。文章还涵盖了GPT-2的简介、数据集处理、自定义进度条回调等内容,适合初学者参考。
129 6
|
30天前
|
机器学习/深度学习 测试技术
ACL杰出论文奖:GPT-4V暴露致命缺陷?JHU等发布首个多模态ToM 测试集,全面提升大模型心智能力
【10月更文挑战第6天】约翰斯·霍普金斯大学等机构提出了一项荣获ACL杰出论文奖的研究,旨在解决大模型在心智理论(ToM)上的不足。他们发布了首个MMToM-QA多模态ToM测试集,并提出BIP-ALM方法,从多模态数据中提取统一表示,结合语言模型进行贝叶斯逆规划,显著提升了模型的ToM能力。这一成果为机器与人类自然交互提供了新思路,尽管仍面临一些局限性和技术挑战。论文详情见:https://arxiv.org/abs/2401.08743。
43 6
|
23天前
|
计算机视觉
Deepseek开源多模态LLM模型框架Janus,魔搭社区最佳实践
deepseek近期推出了简单、统一且灵活的多模态框架Janus,它能够统一处理多模态理解和生成任务。让我们一起来了解一下吧。
|
24天前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
176 2
|
18天前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
43 2
|
22天前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
5天前
|
人工智能 自然语言处理 算法
政务培训|LLM大模型在政府/公共卫生系统的应用
本课程是TsingtaoAI公司面向某卫生统计部门的政府职员设计的大模型技术应用课程,旨在系统讲解大语言模型(LLM)的前沿应用及其在政府业务中的实践落地。课程涵盖从LLM基础知识到智能化办公、数据处理、报告生成、智能问答系统构建等多个模块,全面解析大模型在卫生统计数据分析、报告撰写和决策支持等环节中的赋能价值。
22 2
|
24天前
|
人工智能 自然语言处理 运维
前端大模型应用笔记(一):两个指令反过来说大模型就理解不了啦?或许该让第三者插足啦 -通过引入中间LLM预处理用户输入以提高多任务处理能力
本文探讨了在多任务处理场景下,自然语言指令解析的困境及解决方案。通过增加一个LLM解析层,将复杂的指令拆解为多个明确的步骤,明确操作类型与对象识别,处理任务依赖关系,并将自然语言转化为具体的工具命令,从而提高指令解析的准确性和执行效率。
|
23天前
|
人工智能 前端开发
大模型体验体验报告:OpenAI-O1内置思维链和多个llm组合出的COT有啥区别?传统道家理论+中学生物理奥赛题测试,名不虚传还是名副其实?
一个月前,o1发布时,虽然让人提前体验,但自己并未进行测试。近期终于有机会使用,却仍忘记第一时间测试。本文通过两个测试案例展示了o1的强大能力:一是关于丹田及练气的详细解答,二是解决一道复杂的中学生物理奥赛题。o1的知识面广泛、推理迅速,令人印象深刻。未来,或许可以通过赋予o1更多能力,使其在更多领域发挥作用。如果你有好的测试题,欢迎留言,一起探索o1的潜力。
下一篇
无影云桌面