LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数

简介: LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数

安装依赖

pip install -qU langchain-core langchain-openai

编写代码

定义一个工具

# 定义工具
@tool
def get_word_length(word: str) -> int:
    """Returns the length of a word."""
    return len(word)

创建一个Agent

# 创建Agent
agent = (
    {
        "input": lambda x: x["input"],
        "agent_scratchpad": lambda x: format_to_openai_tool_messages(
            x["intermediate_steps"]
        ),
    }
    | prompt
    | llm_with_tools
    | OpenAIToolsAgentOutputParser()
)

推荐使用GPT-4GPT3.5任务表现上并不是很好。

完整的代码如下

from langchain_openai import ChatOpenAI
from langchain.agents import tool
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.agents.format_scratchpad.openai_tools import (
    format_to_openai_tool_messages,
)
from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser
from langchain.agents import AgentExecutor


llm = ChatOpenAI(model="gpt-4-turbo-preview", temperature=0)
# llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)

# 定义工具
@tool
def get_word_length(word: str) -> int:
    """Returns the length of a word."""
    return len(word)


# print(get_word_length.invoke("abc"))
# 定义一个工具集
tools = [get_word_length]
# 提示词
prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "You are very powerful assistant, but don't know current events",
        ),
        (
            "user",
            "{input}"
        ),
        MessagesPlaceholder(variable_name="agent_scratchpad"),
    ]
)

# 绑定工具集
llm_with_tools = llm.bind_tools(tools)

# 创建Agent
agent = (
    {
        "input": lambda x: x["input"],
        "agent_scratchpad": lambda x: format_to_openai_tool_messages(
            x["intermediate_steps"]
        ),
    }
    | prompt
    | llm_with_tools
    | OpenAIToolsAgentOutputParser()
)
# 执行器
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor_stream = list(agent_executor.stream({"input": "How many letters in the word eudca"}))
print(f"agent_executor_stream: {agent_executor_stream}")

执行结果

➜ python3 test27.py


> Entering new AgentExecutor chain...

Invoking: `get_word_length` with `{'word': 'eudca'}`


5The word "eudca" has 5 letters.

> Finished chain.
agent_executor_stream: [{'actions': [OpenAIToolAgentAction(tool='get_word_length', tool_input={'word': 'eudca'}, log="\nInvoking: `get_word_length` with `{'word': 'eudca'}`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_Oo2mhYvyOHkw4YvzaL1Gz0tb', 'function': {'arguments': '{"word":"eudca"}', 'name': 'get_word_length'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls'})], tool_call_id='call_Oo2mhYvyOHkw4YvzaL1Gz0tb')], 'messages': [AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_Oo2mhYvyOHkw4YvzaL1Gz0tb', 'function': {'arguments': '{"word":"eudca"}', 'name': 'get_word_length'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls'})]}, {'steps': [AgentStep(action=OpenAIToolAgentAction(tool='get_word_length', tool_input={'word': 'eudca'}, log="\nInvoking: `get_word_length` with `{'word': 'eudca'}`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_Oo2mhYvyOHkw4YvzaL1Gz0tb', 'function': {'arguments': '{"word":"eudca"}', 'name': 'get_word_length'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls'})], tool_call_id='call_Oo2mhYvyOHkw4YvzaL1Gz0tb'), observation=5)], 'messages': [FunctionMessage(content='5', name='get_word_length')]}, {'output': 'The word "eudca" has 5 letters.', 'messages': [AIMessage(content='The word "eudca" has 5 letters.')]}]

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
3月前
|
人工智能 缓存 监控
使用LangChain4j构建Java AI智能体:让大模型学会使用工具
AI智能体是大模型技术的重要演进方向,它使模型能够主动使用工具、与环境交互,以完成复杂任务。本文详细介绍如何在Java应用中,借助LangChain4j框架构建一个具备工具使用能力的AI智能体。我们将创建一个能够进行数学计算和实时信息查询的智能体,涵盖工具定义、智能体组装、记忆管理以及Spring Boot集成等关键步骤,并展示如何通过简单的对话界面与智能体交互。
1044 1
|
3月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1596 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
6月前
|
人工智能 运维 监控
基于魔搭MCP广场的AI效率革命:在通义灵码中一键调用2400+工具的开发指南
MCP广场技术架构解析与效率优化全攻略。通过统一工具接入规范、智能路由引擎及Serverless执行器,显著降低集成成本,提升AI开发效率。实战演示从环境配置到工具调用全流程,并深入讲解异步处理、成本控制、安全接入等企业级方案。实测数据显示,工具接入周期缩短93%,年节省超85万元。适合追求高效AI研发的团队参考。
345 0
|
4月前
|
存储 人工智能 前端开发
​​LangChain默认工具正在污染你的知识库!PDF解析崩溃真相​
本文深入探讨RAG项目中PDF解析的痛点与解决方案,分析LangChain默认工具的局限性,提出专业级文档处理架构设计与工具选型策略,涵盖表格图像处理、多模态解析与可扩展管道实现,助力提升RAG系统效果。
367 6
|
3月前
|
算法 安全 开发者
大模型部署指南:从个人玩转到企业级应用,这4款工具必看!
本文介绍了五款主流大语言模型部署工具,帮助用户根据需求选择合适的方案。包括适合个人使用的 Ollama 和 LM Studio、优化低配设备运行的 llama.cpp、企业级部署的 vLLM,以及 Hugging Face 推出的 TGI 框架,覆盖从本地体验到高性能服务的多种场景。
|
6月前
|
人工智能 搜索推荐 测试技术
通义灵码 Agent+MCP:打造自动化菜品推荐平台,从需求到部署实现全流程创新
通过通义灵码编程智能体模式和 MCP 的集成,开发者可以高效构建在线菜品推荐网站。智能体模式大幅提升了开发效率,MCP 服务则为功能扩展提供了无限可能。

热门文章

最新文章