LangChain-20 Document Loader 文件加载 加载MD DOCX EXCEL PPT PDF HTML JSON 等多种文件格式 后续可通过FAISS向量化 增强检索

简介: LangChain-20 Document Loader 文件加载 加载MD DOCX EXCEL PPT PDF HTML JSON 等多种文件格式 后续可通过FAISS向量化 增强检索

背景描述

LangChain 提供了多种文档加载器,包括但不限于以下几种:


TextLoader:用于从各种来源加载文本数据。

CSVLoader:用于加载 CSV 文件并将其转换为 LangChain 可以处理的文档格式。

UnstructuredFileLoader:能够自动检测并处理不同格式的文件。

DirectoryLoader:用于加载指定文件夹中的文件。

UnstructuredHTMLLoader:用于从 HTML 文件中提取有意义的内容。

JSONLoader:用于加载和处理 JSON 文件。

PyPDFLoader:用于加载 PDF 文件。

ArxivLoader:专门用于加载来自 Arxiv 的文档。

安装依赖

pip install -qU langchain-core langchain-openai

加载Text

编写代码

from langchain_community.document_loaders import TextLoader

loader = TextLoader("./index.md")
data = loader.load()
print(data)

运行结果

➜ python3 test20.py
[Document(page_content='# hello world!\nthis is a markdown!\n', metadata={'source': '

加载CSV

编写代码

from langchain_community.document_loaders.csv_loader import CSVLoader


loader = CSVLoader(file_path='./example_data/mlb_teams_2012.csv')
data = loader.load()
print(data)

运行结果

loader = CSVLoader(file_path='./example_data/mlb_teams_2012.csv', csv_args={
    'delimiter': ',',
    'quotechar': '"',
    'fieldnames': ['MLB Team', 'Payroll in millions', 'Wins']
})

data = loader.load()
print(data)

加载目录

编写代码

from langchain_community.document_loaders import DirectoryLoader

loader = DirectoryLoader('../', glob="**/*.md")
docs = loader.load()
print(docs)

# 显示一个 进度条
loader = DirectoryLoader('../', glob="**/*.md", show_progress=True)

# 多线程加载
loader = DirectoryLoader('../', glob="**/*.md", use_multithreading=True)

# 自动检测编码
text_loader_kwargs={'autodetect_encoding': True}
loader = DirectoryLoader(path, glob="**/*.txt", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)

加载HTML

编写代码

from langchain_community.document_loaders import UnstructuredHTMLLoader
from langchain_community.document_loaders import BSHTMLLoader

loader = UnstructuredHTMLLoader("example_data/fake-content.html")
data = loader.load()
print(data)

# 如果你会用 BeautifulSoup4 的话,可以用它解析
loader = BSHTMLLoader("example_data/fake-content.html")
data = loader.load()
print(data)

加载JSON

编写代码

from langchain_community.document_loaders import JSONLoader

import json
from pathlib import Path
from pprint import pprint

# 普通的加载 json.loads
file_path='./example_data/facebook_chat.json'
data = json.loads(Path(file_path).read_text())
pprint(data)

# 使用 JSONLoader
loader = JSONLoader(
    file_path='./example_data/facebook_chat.json',
    jq_schema='.messages[].content',
    text_content=False)

data = loader.load()
pprint(data)

加载JSON LINES

编写代码

from langchain_community.document_loaders import JSONLoader

import json
from pathlib import Path
from pprint import pprint

file_path = './example_data/facebook_chat_messages.jsonl'
pprint(Path(file_path).read_text())

loader = JSONLoader(
    file_path='./example_data/facebook_chat_messages.jsonl',
    jq_schema='.content',
    text_content=False,
    json_lines=True)

data = loader.load()
pprint(data)

加载Markdown

编写代码

from langchain_community.document_loaders import UnstructuredMarkdownLoader

markdown_path = "../../../../../README.md"
loader = UnstructuredMarkdownLoader(markdown_path)
data = loader.load()

加载PDF

安装依赖

pip install pypdf
pip install rapidocr-onnxruntime

编写代码

from langchain_community.document_loaders import PyPDFLoader

# 加载方式很多,不止这一个PDF的Loader
loader = PyPDFLoader("example_data/layout-parser-paper.pdf")
pages = loader.load_and_split()
print(pages[0])

# 可以将图片转化为文字
loader = PyPDFLoader("https://arxiv.org/pdf/2103.15348.pdf", extract_images=True)
pages = loader.load()
pages[4].page_content

向量化数据(简单例子 详细可看该系列的其他文章)

编写代码

from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings

faiss_index = FAISS.from_documents(pages, OpenAIEmbeddings())
docs = faiss_index.similarity_search("How will the community be engaged?", k=2)
for doc in docs:
    print(str(doc.metadata["page"]) + ":", doc.page_content[:300])


相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
8月前
|
前端开发 JavaScript
个人征信电子版无痕修改, 个人信用报告pdf修改,js+html+css即可实现【仅供学习用途】
本代码展示了一个信用知识学习系统的前端实现,包含评分计算、因素分析和建议生成功能。所有数据均为模拟生成
|
5月前
|
小程序
公众号如何添加附传Word、Excel、Pdf、PPT文档
公众号里添加一些文档给公众号粉丝下载,比如课件PPT、申请表Word文档、岗位需求Excel表、大赛入围/获奖名单等。公众号本身是不支持直接上传文件的,但我们可以通过附件小程序“间接”上传文件。
811 0
|
8月前
|
JSON 前端开发 应用服务中间件
配置Nginx根据IP地址进行流量限制以及返回JSON格式数据的方案
最后,记得在任何生产环境部署之前,进行透彻测试以确保一切运转如预期。遵循这些战术,守卫你的网络城堡不再是难题。
336 3
|
9月前
|
人工智能 算法 安全
使用CodeBuddy实现批量转换PPT、Excel、Word为PDF文件工具
通过 CodeBuddy 实现本地批量转换工具,让复杂的文档处理需求转化为 “需求描述→代码生成→一键运行” 的极简流程,真正实现 “技术为效率服务” 的目标。感兴趣的快来体验下把
506 10
|
8月前
|
前端开发
个人征信PDF无痕修改软件,个人征信模板可编辑,个人征信报告p图神器【js+html+css仅供学习用途】
这是一款信用知识学习系统,旨在帮助用户了解征信基本概念、信用评分计算原理及信用行为影响。系统通过模拟数据生成信用报告,涵盖还款记录
|
JSON 人工智能 算法
探索大型语言模型LLM推理全阶段的JSON格式输出限制方法
本篇文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
1986 48
|
JSON 前端开发 搜索推荐
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
|
人工智能 自然语言处理 JavaScript
Univer:开源全栈 AI 办公工具,支持 Word、Excel、PPT 等文档处理和多人实时协作
Univer 是一款开源的 AI 办公工具,支持 Word、Excel 等文档处理的全栈解决方案。它具有强大的功能、高度的可扩展性和跨平台兼容性,适用于个人和企业用户,能够显著提高工作效率。
2475 9
Univer:开源全栈 AI 办公工具,支持 Word、Excel、PPT 等文档处理和多人实时协作
|
JSON JavaScript Java
对比JSON和Hessian2的序列化格式
通过以上对比分析,希望能够帮助开发者在不同场景下选择最适合的序列化格式,提高系统的整体性能和可维护性。
518 3
|
Shell Android开发
Android系统 adb shell push/pull 禁止特定文件
Android系统 adb shell push/pull 禁止特定文件
1522 1