激活函数与神经网络------带你迅速了解sigmoid,tanh,ReLU等激活函数!!!

简介: 激活函数与神经网络------带你迅速了解sigmoid,tanh,ReLU等激活函数!!!

🍔 神经网络

🐻 什么是神经网络

人工神经网络( Artificial Neural Network, 简写为ANN)也简称为神经网络(NN),是一种模仿生物神经网络结构和功能的 计算模型。人脑可以看做是一个生物神经网络,由众多的神经元连接而成。各个神经元传递复杂的电信号,树突接收到输入信号,然后对信号进行处理,通过轴突输出信号。下图是生物神经元示意图:

当电信号通过树突进入到细胞核时,会逐渐聚集电荷。达到一定的电位后,细胞就会被激活,通过轴突发出电信号。

 🐻 人工神经网络

那怎么构建人工神经网络中的神经元呢?

这个流程就像,来源不同树突(树突都会有不同的权重)的信息, 进行的加权计算, 输入到细胞中做加和,再通过激活函数输出细胞值。

接下来,我们使用多个神经元来构建神经网络,相邻层之间的神经元相互连接,并给每一个连接分配一个强度,如下图所示:

xunsu

神经网络中信息只向一个方向移动,即从输入节点向前移动,通过隐藏节点,再向输出节点移动。其中的基本部分是:

  1. 输入层: 即输入 x 的那一层
  2. 输出层: 即输出 y 的那一层
  3. 隐藏层: 输入层和输出层之间都是隐藏层

特点是:

同一层的神经元之间没有连接。 第 N 层的每个神经元和第 N-1层 的所有神经元相连(这就是full connected的含义), 第N-1层神经元的输出就是第N层神经元的输入。每个连接都有一个权值。

🍔 网络非线性因素的理解

激活函数用于对每层的输出数据进行变换, 进而为整个网络结构结构注入了非线性因素。此时, 神经网络就可以拟合各种曲线。如果不使用激活函数,整个网络虽然看起来复杂,其本质还相当于一种线性模型,如下公式所示:

  1. 没有引入非线性因素的网络等价于使用一个线性模型来拟合
  2. 通过给网络输出增加激活函数, 实现引入非线性因素, 使得网络模型可以逼近任意函数, 提升网络对复杂问题的拟合能力.

另外通过图像可视化的形式理解:

神经网络可视化

我们发现增加激活函数之后, 对于线性不可分的场景,神经网络的拟合能力更强。

🍔 常见的激活函数

激活函数主要用来向神经网络中加入非线性因素,以解决线性模型表达能力不足的问题,它对神经网络有着极其重要的作用。我们的网络参数在更新时,使用的反向传播算法(BP),这就要求我们的激活函数必须可微。

2.1 sigmoid 激活函数

sigmoid 激活函数的函数图像如下:

 

sigmoid 函数图像可以得到,sigmoid 函数可以将任意的输入映射到 (0, 1) 之间,当输入的值大致在 <-6 或者 >6 时,意味着输入任何值得到的激活值都是差不多的,这样会丢失部分的信息。比如:输入 100 和输出 10000 经过 sigmoid 的激活值几乎都是等于 1 的,但是输入的数据之间相差 100 倍的信息就丢失了。

对于 sigmoid 函数而言,输入值在 [-6, 6] 之间输出值才会有明显差异,输入值在 [-3, 3] 之间才会有比较好的效果。

通过上述导数图像,我们发现导数数值范围是 (0, 0.25),当输入 <-6 或者 >6 时,sigmoid 激活函数图像的导数接近为 0,此时网络参数将更新极其缓慢,或者无法更新。

一般来说, sigmoid 网络在 5 层之内就会产生梯度消失现象。而且,该激活函数并不是以 0 为中心的,所以在实践中这种激活函数使用的很少。sigmoid函数一般只用于二分类的输出层。

在 PyTorch 中使用 sigmoid 函数的示例代码如下💯 :

import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F
def test():
    _, axes = plt.subplots(1, 2)
    # 函数图像
    x = torch.linspace(-20, 20, 1000)
    y = F.tanh(x)
    axes[0].plot(x, y)
    axes[0].grid()
    axes[0].set_title('Sigmoid 函数图像')
    # 导数图像
    x = torch.linspace(-20, 20, 1000, requires_grad=True)
    torch.sigmoid(x).sum().backward()
    axes[1].plot(x.detach(), x.grad)
    axes[1].grid()
    axes[1].set_title('Sigmoid 导数图像')
    plt.show()
if __name__ == '__main__':
    test()

2.2 tanh 激活函数

Tanh 叫做双曲正切函数,其公式如下:

Tanh 的函数图像、导数图像如下:

由上面的函数图像可以看到,Tanh 函数将输入映射到 (-1, 1) 之间,图像以 0 为中心,在 0 点对称,当输入 大概<-3 或者 >3 时将被映射为 -1 或者 1。其导数值范围 (0, 1),当输入的值大概 <-3 或者 > 3 时,其导数近似 0。

🐼 与 Sigmoid 相比:

Tanh是以 0 为中心的,使得其收敛速度要比 Sigmoid 快,减少迭代次数。然而,从图中可以看出,Tanh 两侧的导数也为 0,同样会造成梯度消失。

若使用时可在隐藏层使用tanh函数,在输出层使用sigmoid函数。

代码演示如下💯:

import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F
def test():
    _, axes = plt.subplots(1, 2)
    # 函数图像
    x = torch.linspace(-20, 20, 1000)
    y = F.tanh(x)
    axes[0].plot(x, y)
    axes[0].grid()
    axes[0].set_title('Tanh 函数图像')
    # 导数图像
    x = torch.linspace(-20, 20, 1000, requires_grad=True)
    F.tanh(x).sum().backward()
    axes[1].plot(x.detach(), x.grad)
    axes[1].grid()
    axes[1].set_title('Tanh 导数图像')
    plt.show()
if __name__ == '__main__':
    test()

2.3 ReLU 激活函数

ReLU 激活函数公式如下:

函数图像如下:

从上述函数图像可知,ReLU 激活函数将小于 0 的值映射为 0,而大于 0 的值则保持不变,它更加重视正信号,而忽略负信号,这种激活函数运算更为简单,能够提高模型的训练效率。

但是,如果我们网络的参数采用随机初始化时,很多参数可能为负数,这就使得输入的正值会被舍去,而输入的负值则会保留,这可能在大部分的情况下并不是我们想要的结果。

ReLU 的导数图像如下:

ReLU是目前最常用的激活函数。 从图中可以看到,当x<0时,ReLU导数为0,而当x>0时,则不存在饱和问题。所以,ReLU 能够在x>0时保持梯度不衰减,从而缓解梯度消失问题。然而,随着训练的推进,部分输入会落入小于0区域,导致对应权重无法更新。这种现象被称为“神经元死亡”。

🐼 与sigmoid相比,RELU的优势是:

采用sigmoid函数,计算量大(指数运算),反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。 sigmoid函数反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练。 Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。

2.4 SoftMax

softmax用于多分类过程中,它是二分类函数sigmoid在多分类上的推广,目的是将多分类的结果以概率的形式展现出来。

计算方法如下图所示:

 

Softmax 直白来说就是将网络输出的 logits 通过 softmax 函数,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们将它理解成概率,选取概率最大(也就是值对应最大的)节点,作为我们的预测目标类别。

import torch
if __name__ == '__main__':
    scores = torch.tensor([0.2, 0.02, 0.15, 0.15, 1.3, 0.5, 0.06, 1.1, 0.05, 3.75])
    probabilities = torch.softmax(scores, dim=0)
    print(probabilities)

程序输出结果:

tensor([0.0212, 0.0177, 0.0202, 0.0202, 0.0638, 0.0287, 0.0185, 0.0522, 0.0183,
        0.7392])

🍔 小节

本小节带着大家了解下常见的激活函数,以及对应的 API 的使用。除了上述的激活函数,还存在很多其他的激活函数,如下图所示:

这么多激活函数, 我们应该如何选择呢?

🍬 对于隐藏层:

  1. 优先选择RELU激活函数
  2. 如果ReLu效果不好,那么尝试其他激活,如Leaky ReLu等。
  3. 如果你使用了Relu, 需要注意一下Dead Relu问题, 避免出现大的梯度从而导致过多的神经元死亡。
  4. 不要使用sigmoid激活函数,可以尝试使用tanh激活函数

🍬 对于输出层

  1. 二分类问题选择sigmoid激活函数
  2. 多分类问题选择softmax激活函数
  3. 回归问题选择identity激活函数
相关文章
|
2天前
|
机器学习/深度学习 编解码
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
本文介绍了九种常用的神经网络激活函数:Sigmoid、tanh、ReLU、ReLU6、Leaky ReLU、ELU、Swish、Mish和Softmax,包括它们的定义、图像、优缺点以及在深度学习中的应用和代码实现。
21 0
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
|
5月前
|
机器学习/深度学习 自然语言处理 数据可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
2月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
43 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
2月前
|
机器学习/深度学习 Linux TensorFlow
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
43 0
|
2月前
|
机器学习/深度学习 自然语言处理 TensorFlow
|
3月前
|
机器学习/深度学习 编解码 数据可视化
图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
目前我们看到有很多使用KAN替代MLP的实验,但是目前来说对于图神经网络来说还没有类似的实验,今天我们就来使用KAN创建一个图神经网络Graph Kolmogorov Arnold(GKAN),来测试下KAN是否可以在图神经网络方面有所作为。
157 0
|
5月前
|
机器学习/深度学习 自然语言处理 搜索推荐
【传知代码】图神经网络长对话理解-论文复现
在ACL2023会议上发表的论文《使用带有辅助跨模态交互的关系时态图神经网络进行对话理解》提出了一种新方法,名为correct,用于多模态情感识别。correct框架通过全局和局部上下文信息捕捉对话情感,同时有效处理跨模态交互和时间依赖。模型利用图神经网络结构,通过构建图来表示对话中的交互和时间关系,提高了情感预测的准确性。在IEMOCAP和CMU-MOSEI数据集上的实验结果证明了correct的有效性。源码和更多细节可在文章链接提供的附件中获取。
【传知代码】图神经网络长对话理解-论文复现

热门文章

最新文章