基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。

1.程序功能描述
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg
3.jpeg

3.核心程序

```while COUNT<=Itertions ֲ
L = zeros(Ant_Num,1);
for i=1:Ant_Num
Infor_Tabu_tmps = Infor_Tabu(i,:);
R = Infor_Tabu_tmps(Infor_Tabu_tmps>0);
for j=1:(length(R)-1)
L(i) = L(i) + D(R(j),R(j+1));
end
end
Best_Length(COUNT) = min(L);
pos = find(L==Best_Length(COUNT));
Best_Road(COUNT,1:length(Infor_Tabu(pos(1),:)))=Infor_Tabu(pos(1),:);
% Ž и
select = find(Best_Road(COUNT,:)==1);
FF = [];
FF2 = 0;
for I1 = 1:(length(select)-1)
Best_Road2 = Best_Road(COUNT,select(I1):select(I1+1));
Best_Road_len = length(Best_Road2);
T = zeros((length(select)-1),1);
for I4=1:(Best_Road_len-1)
T(I1) = T(I1) + D(Best_Road2(I4),Best_Road2(I4+1));
end
for I2 = 2:(Best_Road_len-1)
for I3=(I2+1):(Best_Road_len-1)
Best_Road3 = Best_Road2;
Best_Road31 = Best_Road3(I2);
Best_Road32 = Best_Road3(I3);
Best_Road3(I2) = Best_Road32;
Best_Road3(I3) = Best_Road31;
TT = zeros(1);
for I4=1:(Best_Road_len-1)
TT = TT + D(Best_Road3(I4),Best_Road3(I4+1));
end
if TT= 2
Best_Road2=Best_Road2(2:Best_Road_len);
end
FF = [FF,Best_Road2];
FF2 = FF2+T(I1);
end
Best_Length(COUNT) = FF2;
Best_Road(COUNT,1:length(FF)) = FF;
FF = [];
FF2 = 0;
Avg_Length(COUNT) = mean(L);
COUNT = COUNT+1;
% Ϣ
Delta_Infor = zeros(PNUM,PNUM);
for i=1:Ant_Num
Infor_Tabu_tmps = Infor_Tabu(i,:);
R = Infor_Tabu_tmps(Infor_Tabu_tmps>0);
for j=1:(length(R)-1)
Delta_Infor(R(j),R(j+1))=Delta_Infor(R(j),R(j+1))+Q/L(i);
end
end
Infor_cube = (1-Rho).*Infor_cube+Delta_Infor;
% ɱ
Infor_Tabu = zeros(Ant_Num,PNUM);
Carrier = 0;
end

Pos = find(Best_Length==min(Best_Length));
best_route = Best_Road(Pos(1),:);
best_length = Best_Length(Pos(1));
best_route = best_route(best_route>0);

best_route
best_length

axes(handles.axes1);
plot([Position(best_route,1)],[Position(best_route,2)],'ro');
axis square;

axes(handles.axes2);
plot([Position(best_route,1)],[Position(best_route,2)],'rs');
hold on
plot([Position(best_route,1)],[Position(best_route,2)],'b-');
axis square;

axes(handles.axes3);
plot(Best_Length,'b-o');
hold on
plot(Avg_Length,'r-o');
grid on;
legend(' ̾ ','ƽ ');

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
clc;
clear;
close all;
06_012m

```

4.本算法原理
4.1车辆路径问题(Vehicle Routing Problem, VRP)概述
车辆路径问题是一个典型的组合优化问题,其目标是在满足一系列约束条件下,为一组客户分配服务车辆,并确定每辆车的行驶路线,使得所有客户的配送需求得到满足的同时,总行驶距离或成本最小。数学表达式可以表示为:

092c4a26fafe77da78babe5f96d783b4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,

m 是车辆数量;
n 是客户节点的数量;
cij​ 表示从客户节点 i 到客户节点 j 的行驶距离或成本;
xij​ 是二进制变量,如果 xij​=1,则表明在解决方案中,车辆从节点 i 直接行驶到节点 j。
同时需要满足以下约束条件:

每个客户节点仅被访问一次(除了起点和终点可能相同);
所有车辆必须返回出发点;
每辆车的最大载货量限制;
每辆车的最大行驶距离或时间限制等。
4.2 禁忌搜索算法(Tabu Search, TS)原理
禁忌搜索是一种启发式全局优化算法,通过不断迭代改进当前解,并利用记忆机制避免陷入局部最优解。对于VRP问题,TS的基本步骤如下:

初始化:生成一个初始解(即一个可行的车辆路线集合)。
定义邻域结构:定义如何改变当前解以生成新的候选解,通常包括交换、插入、删除、反转等操作。
设置禁忌列表(Tabu List):记录最近若干步内被改变过的元素及其变化方式,在一定步数内禁止再次进行同样的改变。
迭代过程:
生成当前解的一个或多个邻居解。
对每个邻居解进行评估,检查是否违反任何硬约束(如容量限制),若不违反,则计算其目标函数值。
若邻居解优于当前解且不在禁忌列表中,则接受该邻居解作为新的当前解,并将其变化信息加入禁忌列表。
更新最佳解记录,当发现更好的解时保存。
继续迭代直到达到预设的终止条件(如迭代次数、改进幅度阈值等)。

相关文章
|
13天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
21天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
22天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
1天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
22天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
23天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
22天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
41 3
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。