30天拿下Rust之向量

简介: 30天拿下Rust之向量

概述

在Rust语言中,向量(Vector)是一种动态数组类型,可以存储相同类型的元素,并且可以在运行时改变大小。向量是Rust标准库中的一部分,位于std::vec模块中。向量是一个非常灵活和强大的数据结构,可以方便地用于各种场景,包括:存储数据、处理集合、构建动态数组等。

向量的创建

向量类型由标准库中的Vec<T>结构体实现,这里的T是类型参数,代表向量能够存储任何类型的单个值,但所有元素必须是同一类型。Rust的向量是在堆上分配的,这意味着当我们创建一个向量时,它会在堆上分配内存,而不是在栈上。因此,当向量超出作用域时,Rust会自动释放其占用的内存,防止内存泄漏。

在Rust中,创建向量主要有以下4种方法。

1、使用Vec::new创建空向量。

let mut vec_number: Vec<i32> = Vec::new();


2、使用vec!宏创建带有初始值的向量。

fn main() {
    // 创建一个整数向量
    let vec_number: Vec<i32> = vec![66, 99, 100];
    println!("{:?}", vec_number);
    // 创建一个字符串向量
    let vec_str: Vec<String> = vec!["Hope".to_string(), "GitHub".to_string()];
    println!("{:?}", vec_str);
}


3、使用vec!宏创建指定长度,并初始化所有元素为相同值的向量。

fn main() {
    let vec_number: Vec<i32> = vec![0; 5];
    // 输出:[0, 0, 0, 0, 0]
    println!("{:?}", vec_number);
}


4、使用Vec::with_capacity创建具有特定容量,但长度为0的向量。

fn main() {
    // 创建一个初始为空,但足够存储5个整型元素的向量
    let mut vec_number: Vec<i32> = Vec::with_capacity(5);
    // 输出:[]
    println!("{:?}", vec_number);
}


向量的访问

访问向量的元素,可以通过索引或迭代器进行。

1、通过索引访问。注意:Rust中的索引是基于0的,即第一个元素的索引是0,最后一个元素的索引是向量长度减1。在Rust中使用索引访问元素,没有运行时边界检查。如果索引超过边界,会导致程序崩溃。为了更安全地使用索引访问,避免因索引越界引发崩溃,可以使用get()方法或get_mut()方法,它返回一个Option<&T>或Option<&mut T>。

fn main() {
    let mut vec_number = vec![66, 99, 100];
    // 访问第一个元素,输出:66
    println!("{}", vec_number[0]);
    // 修改第二个元素
    vec_number[2] = 88;
    // 安全访问,当索引不存在时,不会panic
    if let Some(value) = vec_number.get(2) {
        // 输出:88
        println!("{}", value);
    } else {
        println!("out of bounds");
    }
    // 对可变引用的安全访问,可修改向量中的元素
    let mut vec_mut = vec![1, 2, 3];
    if let Some(value) = vec_mut.get_mut(1) {
        *value = 1024;
    }
    // 输出:[1, 1024, 3]
    println!("{:?}", vec_mut);
   
    // 获取向量的长度,输出:3
    println!("{}", vec_mut.len());
    // 清空向量,并判断向量是否为空
    vec_mut.clear();
    if vec_mut.is_empty() {
        println!("empty");
    } else {
        println!("not empty");
    }
}



2、通过迭代器访问。迭代器(Iterator)是访问向量元素的一种安全、高效且灵活的方式。通过迭代器可以遍历向量中的所有元素,并对它们执行操作,而无需关心具体的索引。iter()方法用于获取只读迭代器,iter_mut()方法用于获取可写迭代器,into_iter()方法用于消耗向量并迭代。

fn main() {
    let mut vec_str = vec!["Hope", "GitHub", "Gitee"];
    // 使用for循环遍历向量的所有元素
    for s in &vec_str {
        println!("{}", s);
    }
   
    // 使用iter()显式获取迭代器
    for s in vec_str.iter() {
        println!("{}", s);
    }
   
    // 若要修改元素,需使用iter_mut()获得可变引用迭代器
    for s in vec_str.iter_mut() {
        if s.starts_with("C") {
            *s = "Rust";
        }
    }
    println!("{:?}", vec_str);
   
    for s in vec_str.into_iter() {
        println!("{}", s);
    }
    // 到这里时,vec_str不再有效,因为它已经被消耗掉了
    // println!("{:?}", vec_str);
}



向量的修改

1、添加、移除元素。使用push方法可以将元素添加到向量的末尾,使用pop方法可以从向量的末尾移除元素并返回该元素。

fn main() {
    let mut vec_number = vec![10, 20];
    vec_number.push(66);
    // 输出:[10, 20, 66]
    println!("{:?}", vec_number);
    let last_number = vec_number.pop();
    // 输出:66
    if let Some(value) = last_number {
        println!("{}", value);
    } else {
        println!("no data");
    }
   
    // 输出:[10, 20]
    println!("{:?}", vec_number);
}


2、插入、删除元素。insert)方法用于将元素插入到指定索引位置,原有位置及之后的元素都会右移。remove()方法用于删除并返回指定索引位置的元素,之后的元素会左移填补空位。注意:插入和删除操作可能导致向量内部需要重新分配内存以适应大小的变化,这可能涉及到元素的移动;因此,对于大型数据集或性能敏感的应用,这些操作可能会有较高的时间开销。

fn main() {
    let mut vec_number = vec![10, 20];
    // 插入元素
    vec_number.insert(1, 66);
    // 输出:[10, 66, 20]
    println!("{:?}", vec_number);
    // 删除元素
    vec_number.remove(0);
    // 输出:[66, 20]
    println!("{:?}", vec_number);
}



向量的切片

Rust的向量支持切片操作,这意味着,我们可以获取向量的一部分作为新的向量。切片是通过指定起始索引和结束索引来创建的,注意:包括起始索引的元素,但不包括结束索引的元素。

fn main() {
    let mut vec_number = vec![10, 20, 30, 40, 50];
    // 获取一个切片,从索引2到4(不包括4)
    let slice = &mut vec_number[2..4];
    // 输出:[30, 40]
    println!("{:?}", slice);
    // 修改切片中的元素
    for item in slice.iter_mut() {
        *item *= 2;
    }
    // 输出:[60, 80]
    println!("{:?}", slice);
}



向量的排序

Rust的向量可以通过sort()方法或sort_unstable()来进行排序,还可以通过sort_by()方法或sort_unstable_by()方法根据自定义的比较逻辑来进行排序。sort()方法是稳定的排序算法,即相同元素的相对顺序不会改变。sort_unstable()方法是不稳定的排序算法,意味着相同的元素可能会改变相对顺序,但总体上会按照给定的排序规则排序。

fn main() {
    let mut vec_number = vec![7, 88, 12, 36, 50];
    // 默认为升序排序
    vec_number.sort_unstable();  
    // 输出:[7, 12, 36, 50, 88]
    println!("{:?}", vec_number);
    // 显式指定排序规则,仍然是升序
    vec_number.sort_by(|a, b| a.cmp(b));
    // 输出: [7, 12, 36, 50, 88]
    println!("{:?}", vec_number);
    // 若要降序排序,反转比较结果
    vec_number.sort_unstable_by(|a, b| b.cmp(a));
    // 输出: [88, 50, 36, 12, 7]
    println!("{:?}", vec_number);
}



向量的扩展和收缩

在Rust中,向量提供了几种方法来管理其容量和大小。容量是向量在内存中为元素预留的空间大小,而大小则是向量当前实际包含的元素数量。当添加元素到向量时,如果当前容量不足,向量可能会自动增长其容量。但这并不意味着当我们删除元素时,向量会自动缩小其容量。

以下是向量中用于管理容量的几个方法。

1、resize方法用于改变容量的大小。如果新的大小大于当前大小,向量会在末尾添加默认值(对于整数类型,通常是0;对于其他类型,则依赖于其默认构造函数)。如果新的大小小于当前大小,向量会丢弃末尾的多余元素。

fn main() {
    let mut vec_number = vec![10, 20, 30];
    // 向量为[10, 20, 30, 0, 0],大小为5,容量可能增长以容纳更多元素
    vec_number.resize(5, 0);
    println!("{:?}", vec_number);
    // 向量为[10, 20],大小为2,但容量可能仍然大于2
    vec_number.resize(2, 0);
    println!("{:?}", vec_number);
}


2、reserve方法用于确保向量至少有足够的容量来存储指定数量的元素,而不会重新分配。如果当前容量小于所需容量,向量会分配更多内存,这不会改变向量的大小。

fn main() {
    let mut vec_number = vec![10, 20, 30];
    // 确保vec至少有20的容量,但不改变其大小和内容
    vec_number.reserve(20);
    // 输出:[10, 20, 30]
    println!("{:?}", vec_number);
}


3、shrink_to_fit方法尝试将向量的容量减少到与其大小相同。这通常在我们确定不再需要额外容量,并且希望减少内存使用时很有效。注意:这个方法并不保证一定能减少容量,某些情况下,出于性能或实现的原因,向量可能会保留一些额外的容量。

fn main() {
    let mut vec_number = vec![10, 20, 30];
    // 将容量增加到10
    vec_number.reserve(10);
    // 删除一个元素,现在大小是2,但容量可能仍然是10
    vec_number.pop();
    // 尝试将容量减少到2
    vec_number.shrink_to_fit();
    println!("{}", vec_number.capacity());
}



注意:在使用上述这些方法时,我们应该考虑性能开销和内存使用之间的权衡。频繁地调整向量的容量可能会导致不必要的性能开销,因此在确定确实需要调整容量时,才应该使用这些方法。

向量的连接和合并

在Rust中,如果想要连接或合并多个集合,可以使用extend方法,或者利用迭代器的collect方法。在下面的示例代码中,我们使用extend方法后,vec2被转移了所有权,已经无效了。collect方法通常与迭代器一起使用,用于将迭代器中的元素收集到一个集合中。

fn main() {
    let mut vec1 = vec![1, 2, 3];
    let vec2 = vec![4, 5, 6];
   
    // 将vec2的内容添加到vec1末尾
    vec1.extend(vec2);
    // 输出:[1, 2, 3, 4, 5, 6]
    println!("{:?}", vec1);
    // vec2被extend函数转移了所有权,到这里时无效了
    // println!("{:?}", vec2);
   
    // 创建一个新的向量来包含两个向量的内容
    let vec3 = vec![1, 2, 3];
    let vec4 = vec![4, 5, 6];
    let vec5: Vec<i32> = vec3.into_iter().chain(vec4).collect();
    // 输出:[1, 2, 3, 4, 5, 6]
    println!("{:?}", vec5);
}


相关文章
|
存储 传感器 Rust
Rust 笔记:Rust 语言中使用 vector(向量)
本文介绍 Rust 语言中的向量,包括向量与数组的区别,向量的相关API的用法等等。
9770 3
|
存储 Rust 索引
【RUST学习日记】第11课 向量 (下)
【RUST学习日记】第11课 向量 (下)
|
Rust 索引
【RUST学习日记】第11课 向量 (上)
【RUST学习日记】第11课 向量 (上)
|
3月前
|
Rust 安全 Go
揭秘Rust语言:为何它能让你在编程江湖中,既安全驰骋又高效超车,颠覆你的编程世界观!
【8月更文挑战第31天】Rust 是一门新兴的系统级编程语言,以其卓越的安全性、高性能和强大的并发能力著称。它通过独特的所有权和借用检查机制解决了内存安全问题,使开发者既能享受 C/C++ 的性能,又能避免常见的内存错误。Rust 支持零成本抽象,确保高级抽象不牺牲性能,同时提供模块化和并发编程支持,适用于系统应用、嵌入式设备及网络服务等多种场景。从简单的 “Hello World” 程序到复杂的系统开发,Rust 正逐渐成为现代软件开发的热门选择。
63 1
|
1天前
|
Rust 安全 Java
探索Rust语言的并发编程模型
探索Rust语言的并发编程模型
|
8天前
|
Rust 安全 区块链
探索Rust语言:系统编程的新选择
【10月更文挑战第27天】Rust语言以其安全性、性能和并发性在系统编程领域受到广泛关注。本文介绍了Rust的核心特性,如内存安全、高性能和强大的并发模型,以及开发技巧和实用工具,展示了Rust如何改变系统编程的面貌,并展望了其在WebAssembly、区块链和嵌入式系统等领域的未来应用。
|
9天前
|
Rust 安全 Java
编程语言新宠:Rust语言的特性、优势与实战入门
【10月更文挑战第27天】Rust语言以其独特的特性和优势在编程领域迅速崛起。本文介绍Rust的核心特性,如所有权系统和强大的并发处理能力,以及其性能和安全性优势。通过实战示例,如“Hello, World!”和线程编程,帮助读者快速入门Rust。
22 1
|
10天前
|
Rust 安全 编译器
编程语言新宠:Rust语言的特性、优势与实战入门
【10月更文挑战第26天】Rust语言诞生于2006年,由Mozilla公司的Graydon Hoare发起。作为一门系统编程语言,Rust专注于安全和高性能。通过所有权系统和生命周期管理,Rust在编译期就能消除内存泄漏等问题,适用于操作系统、嵌入式系统等高可靠性场景。
22 2
|
1天前
|
Rust 安全 前端开发
探索Rust语言的异步编程模型
探索Rust语言的异步编程模型
|
11天前
|
Rust 安全 云计算
Rust语言入门:安全性与并发性的完美结合
【10月更文挑战第25天】Rust 是一种系统级编程语言,以其独特的安全性和并发性保障而著称。它提供了与 C 和 C++ 相当的性能,同时确保内存安全,避免了常见的安全问题。Rust 的所有权系统通过编译时检查保证内存安全,其零成本抽象设计使得抽象不会带来额外的性能开销。Rust 还提供了强大的并发编程工具,如线程、消息传递和原子操作,确保了数据竞争的编译时检测。这些特性使 Rust 成为编写高效、安全并发代码的理想选择。
11 0
下一篇
无影云桌面