演示视频 and 完整代码 and 远程安装

简介: 本项目展示了卷积神经网络(CNN)在图像处理中的应用,包括系统效果图片和演示视频。CNN通过局部连接、权重共享及层次化特征提取等特性高效处理图像数据。提供的示例代码展示了如何使用Keras构建一个简单的CNN模型,并进行了模型编译与结构输出。更多详情与完整代码,请访问:[链接](https://www.yuque.com/ziwu/yygu3z/pnrng41h0sg5f5tf)。

、系统效果图片展示
img_06_06_17_44_58

img_06_06_17_45_07

img_06_06_17_45_26

img_06_06_17_45_39

三、演示视频 and 完整代码 and 远程安装
地址:https://www.yuque.com/ziwu/yygu3z/pnrng41h0sg5f5tf

四、卷积神经网络算法介绍
卷积神经网络(CNN)是一种深度学习模型,特别适用于处理图像数据。其主要特点包括:

局部连接:CNN通过局部感受野的方式提取特征,每个卷积层只关注输入数据的一部分,从而减少计算复杂度。
权重共享:在同一卷积层中,使用相同的卷积核(滤波器)对不同区域进行卷积操作,这不仅减少了模型参数数量,还提高了模型的泛化能力。
层次化特征提取:CNN通过多个卷积层逐层提取特征,从简单的边缘和纹理到复杂的形状和物体,使得模型能够有效捕捉到数据的层次特征。
池化层:池化操作(如最大池化或平均池化)用于降低特征图的维度,减少计算量,同时保留重要特征。这有助于减轻过拟合并提高模型的稳定性。
以下是一个简单的CNN案例代码,展示如何使用Keras构建卷积神经网络:

import tensorflow as tf
from tensorflow.keras import layers, models

构建卷积神经网络

//代码效果参考:http://www.603393.com
//代码效果参考:http://www.mwgw.cn
//代码效果参考:https://www.h3cw.com
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(128, (3, 3), activation='relu'),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(10, activation='softmax') # 假设有10个类别
])

编译模型

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

输出模型结构

model.summary()

相关文章
|
5月前
|
移动开发 监控 网络协议
每个端侧产品都需要的用户体验监控
ARMS RUM 是阿里云应用实时监控服务(ARMS)下的用户体验监控(RUM)产品,覆盖 Web/H5、各类平台小程序、Android、iOS、Flutter、ReactNative、Windows、macOS 等平台框架。接入 SDK 后会主动采集端侧页面性能、资源加载、API 调用、异常崩溃、卡顿、用户操作、系统信息等数据,还支持事件、日志、异常等数据按需自定义上报以满足业务数据分析需求,提供全面的性能分析、异常分析、产品分析、会话分析能力,帮助快速跟踪定位问题原因,提升产品用户使用体验。
503 26
|
5月前
|
JavaScript 前端开发 Python
用python执行js代码:PyExecJS库
文章讲述了如何使用PyExecJS库在Python环境中执行JavaScript代码,并提供了安装指南和示例代码。
209 1
用python执行js代码:PyExecJS库
|
3月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
5月前
|
存储 缓存 关系型数据库
阿里云数据库 SelectDB 多计算集群核心设计要点揭秘与场景应用
在云原生存算分离架构下,多计算集群的实现从技术方案上看似乎并不存在过多难题。但从产品的角度而言,具备成熟易用的多计算集群能力且能运用于用户实际业务场景中,还有较多核心要点需要深度设计
阿里云数据库 SelectDB 多计算集群核心设计要点揭秘与场景应用
|
5月前
|
机器学习/深度学习 人工智能 监控
低代码平台的崛起:开发的未来还是过渡阶段?
低代码平台通过可视化界面和预构建模块,让非技术用户也能快速开发应用,引起广泛关注。其兴起源于快速应用开发需求、技术人才短缺及业务与IT融合。然而,定制化限制、性能问题和依赖性是主要挑战。未来,低代码平台将提升技术成熟度,集成更多先进技术,并提供个性化服务,在软件开发中扮演更重要角色。
|
5月前
|
关系型数据库 分布式数据库 PolarDB
PolarDB Ganos的实时时空计算
PolarDB是阿里云自主研发的云原生关系型数据库,提供极致弹性、高性能、海量存储及安全可靠的数据库服务。PolarDB PostgreSQL版100%兼容PostgreSQL和Oracle语法,集成Ganos——新一代云原生时空数据库引擎,具备几何、栅格、轨迹等十大核心引擎能力,支持物理世界时空多模数据的混合存储与分析。本文介绍的Ganos实时电子围栏计算基于PolarDB PostgreSQL版,适用于交通物流、禁飞区管理、营销等多种场景,通过Flink实时计算实现高效的空间数据处理。
84 1
|
5月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
阿里云数据库重磅升级!元数据服务OneMeta + OneOps统一管理多模态数据
|
5月前
|
机器学习/深度学习 人工智能 算法
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
105 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
5月前
|
搜索推荐 SEO
HTML中各种标题标签的正确使用方法及其特点
在HTML中,标题标签(`<h1>`至`<h6>`)用于定义文档的标题结构。`<h1>`表示主标题,每个页面应只有一个;`<h2>`至`<h6>`分别表示不同层级的子标题,可用于细分内容。正确使用这些标签不仅有助于文档的层次分明和可读性提升,还能优化SEO。使用时需注意保持层级结构连续、内容描述清晰。
|
5月前
|
运维 安全 网络安全
常用的运维工具:SSH和远程连接工具详解
常用的运维工具:SSH和远程连接工具详解
215 3

热门文章

最新文章