在 o1 发布后,回顾当年 Jim Fan 对 Q*的预测,他对了吗?

简介: Jim Fan 对 Q* 的预测如今被最新发布的 o1 验证。他将 Q* 与 AlphaGo 类比,认为其通过自我对弈不断进步。AlphaGo 的架构包括策略神经网络、价值神经网络、蒙特卡洛树搜索及输赢判定。Jim 提出大语言模型 Q* 的四个组件:策略神经网络生成思维过程,价值神经网络评估每步正确性,搜索则通过思维链找到最优解,输赢判定基于数学问题答案。这一设计使模型能自我训练提升。o1 在数学和编程领域的出色表现验证了这一方法,但其能力是否能泛化至其他领域仍是通往 AGI 的关键。

去年 Jim Fan 对于 Q* 的预测,现在结合刚发布的 o1 来看基本上都是准确的!

Jim 将 Q* 和 AlphaGo 做了类比,猜测 Q* 可能类似于 AlphaGo,是通过与自己之前的版本进行对弈,自我对弈不断进步,甚至于架构都是类似的。

AlphaGo 的架构核心有四个组件:

策略神经网络(Policy NN,学习部分):负责选择下一步最有可能赢的走法

价值神经网络(Value NN,学习部分):评估当前棋局

蒙特卡洛树搜索(MCTS,搜索部分):模拟从当前位置开始落子的多种可能,类似于人类在算棋步(假如我放在 A 位置,那么对手可能下在哪几个位置,然后我再下一步怎么应对……)

输赢判定:根据围棋规则判定谁赢了。

这个架构的神奇之处在于整个训练过程不需要人类干预,可以像一个“永动机”一样,完全机器自己跟自己之前的版本学习,自己提升自己。这里面的关键在于围棋有很清晰的输赢判定规则,所以机器可以根据输赢结果知道自己选择路径的好和坏,从而可以对模型行为进行奖励或者惩罚,来提升模型的能力。

但对于大语言模型来说,难点在于:

它是快思考,没有类似于蒙特卡洛树搜索这样慢思考

很难判定生成结果的好坏

Jim 认为可以借助数学问题来训练大语言模型,并提出了他对于 Q* 的四个组件的猜想:

策略神经网络:由 GPT 生成解决数学问题的思维过程。(从 o1 的表现来看,这一步应该产生的是思维链)

价值神经网络:另一个 GPT,用于评估每个中间推理步骤的正确性概率。不仅仅对整体输出作出判断,而是对思考链中的每一步提供反馈。(现在 o1 能写出高质量的思维链和这个有很大关系)

搜索:语言模型的搜索不同于围棋中的搜索,这里对应的其实是推理,也就是借助思维链找出推理中的最优解。当然除了 CoT,还有思维树(Tree of Thought),将 CoT 和树搜索结合起来;还有思维图(Graph of Thought),将树进一步变成图。(至于 o1 是不是应用到了思维树和思维图,由于其没有公开,现在还不好肯定)

输赢判定:有几种可能 a) 根据推导数学问题得出的答案是否正确来判断 b) 根据生成的思维链,判断推导过程的结果,即使答案不对,但是推导过程正确也可以获得部分奖励 c) 将数学问题变成代码,执行程序运行结果。现在已经有 Lean 这样的工具可以将数学问题变成代码了。

按照 Jim 的这个设想,负责策略神经网络的大语言模型和负责价值神经网络的大语言模型,就可以相互训练相互促进,有了更强的策略大语言模型后,又可以帮助搜索组件探索出更好的搜索策略,就像 AlphaGo 那样成为一个“永动机”,自己一直训练自己。

现在来看,o1 在数学和编程领域表现突出,也侧面印证了它是充分利用了数学问题和代码问题来进行训练。

但问题在于仅仅使用数学领域和编程领域的数据训练,能力是否可以泛化到其他领域?这也是决定了 o1 这条路径能否通向通用人工智能 AGI 的关键。

从演示和体验来看,在文字解密领域也是很强的,不知道是否是能力泛化的结果,还是也有专门的训练。

另外 o1 在写作方面,表现不如 GPT-4o,也许就像 Jim 说的:

我所描述的仅仅是关于推理的部分。并没有说 Q* 在写诗、讲笑话或角色扮演方面会更有创造力。提升创造力本质上是人类的事情,因此我相信自然数据仍会胜过合成数据。

相关文章
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
谷歌工程师Alex Irpan:2028年有10%概率实现AGI
【2月更文挑战第20天】谷歌工程师Alex Irpan:2028年有10%概率实现AGI
82 6
谷歌工程师Alex Irpan:2028年有10%概率实现AGI
|
机器学习/深度学习 自然语言处理 数据可视化
CVPR 2022 Oral | 视频文本预训练新SOTA!港大、腾讯ARC Lab推出基于多项选择题的借口任务(2)
CVPR 2022 Oral | 视频文本预训练新SOTA!港大、腾讯ARC Lab推出基于多项选择题的借口任务
131 0
|
机器学习/深度学习 自然语言处理 搜索推荐
7 Papers & Radios | 谷歌推出DreamBooth扩散模型;张益唐零点猜想论文出炉(2)
7 Papers & Radios | 谷歌推出DreamBooth扩散模型;张益唐零点猜想论文出炉
245 0
|
机器学习/深度学习 人工智能 编解码
7 Papers & Radios | 谷歌推出DreamBooth扩散模型;张益唐零点猜想论文出炉
7 Papers & Radios | 谷歌推出DreamBooth扩散模型;张益唐零点猜想论文出炉
202 0
|
机器学习/深度学习 自然语言处理 并行计算
7 Papers & Radios | MIT爆出苹果M1芯片重大漏洞;斯坦福CS博士新作:BERT单节点训练最快(2)
7 Papers & Radios | MIT爆出苹果M1芯片重大漏洞;斯坦福CS博士新作:BERT单节点训练最快
205 0
|
自然语言处理 计算机视觉
CVPR 2022 Oral | 视频文本预训练新SOTA!港大、腾讯ARC Lab推出基于多项选择题的借口任务(1)
CVPR 2022 Oral | 视频文本预训练新SOTA!港大、腾讯ARC Lab推出基于多项选择题的借口任务
|
机器学习/深度学习 人工智能 编解码
7 Papers & Radios | 谷歌大牛Jeff Dean撰文深度学习的黄金十年;扩散模型生成视频(1)
7 Papers & Radios | 谷歌大牛Jeff Dean撰文深度学习的黄金十年;扩散模型生成视频
131 0
|
机器学习/深度学习 自然语言处理 网络架构
7 Papers & Radios | 谷歌大牛Jeff Dean撰文深度学习的黄金十年;扩散模型生成视频(2)
7 Papers & Radios | 谷歌大牛Jeff Dean撰文深度学习的黄金十年;扩散模型生成视频
167 0
|
存储 机器学习/深度学习 人工智能
7 Papers & Radios | DeepMind推出2800亿参数模型;剑桥团队首次检测到量子自旋液体
7 Papers & Radios | DeepMind推出2800亿参数模型;剑桥团队首次检测到量子自旋液体
120 0
|
机器学习/深度学习 Web App开发 自然语言处理
7 Papers & Radios | DeepMind推出2800亿参数模型;剑桥团队首次检测到量子自旋液体(2)
7 Papers & Radios | DeepMind推出2800亿参数模型;剑桥团队首次检测到量子自旋液体