二级缓存架构极致提升系统性能

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 本文详细阐述了如何通过二级缓存架构设计提升高并发下的系统性能。

前言

随着k8s成为用云新界面,容器成为众多用户“弹性”的利器,因此容器的创建天生具备高并发特性。


高并发、大数据量下,为了提供更好的容器弹性体验,笔者通过二级缓存的设计,成功优化了系统性能、资源消耗、系统容量。


但持续压榨性能的道路是曲折的。各种缓存方案需要考虑非常多因素,包括缓存的多级架构、预热、击穿、刷新、运维等。


让我们先看看系统性能、资源消耗、系统容量,到底优化了多少?然后详细介绍带来性能提升的二级缓存架构,以及各种缓存方案的设计、比较、落地。


优化结果

笔者对系统进行多次压测,观察了二级缓存等优化手段上线前后,高QPS下的资源消耗、RT和系统容量。


1、资源消耗大幅下降

可以看到,上线了二级缓存等优化手段后,相同QPS下,CPU使用率大幅下降。

image.png

2、RT和系统容量优化

由于计算资源消耗的下降,同QPS下的平均RT也大幅下降。此外我们发现,优化前,随着QPS不断提升,RT明显变慢、变慢幅度很大,优化后,RT变慢的幅度明显减缓。这意味着,系统容量也更加深不可测了。


系统瓶颈在哪?

持续压榨性能,前提是知道瓶颈在哪。笔者怎么定位瓶颈的呢?-> cpuProfile火焰图。


高QPS下,分析了系统cpu火焰图,发现50%+的CPU瓶颈在大量的业务数据处理,主要两块:


1、从redis取业务pojoList时的fastjson array反序列化背景是和redis交互的数据量特别大笔者对缓存value进行过压缩,在解压缩后的string转为List<Pojo>的过程,本质用时间换了空间。


2、调用redis获取数据后的alibaba.cachejson的POJO解析。


在高并发、大数据量的业务背景下,这些过程的耗时被笛卡尔积地放大。


既然分布式缓存CPU资源消耗是瓶颈,那么引入本地缓存,就能解这个问题。另外,本地缓存还能提供服务容灾能力。


数据属性和缓存选型


数据属性

设计缓存方案前,先分析业务数据属性:

  • 符合key -> value的数据模式
  • 读多写少
  • 变更频率低
  • 数据一致性要求不高

简直就是缓存的绝佳使用场景!那么用本地缓存,还是分布式缓存呢?还是二级缓存?


本地/分布式缓存特性

基于业务属性,我们来match本地/分布式缓存特性:


本地缓存


  • 优点
  • 访问速度快;
  • 减少网络开销:不存在redis流量瓶颈(之前由于数据valueList量过大,导致redis网络流量超过redis实例SLA,还做过一次gzip压缩);
  • 缺点
  • 可用性相对差:如果应用实例宕机/重启, 缓存数据会丢失;
  • 资源限制:受限于单机内存大小,不适合大规模数据缓存(相对内存大小来说,本业务数据量还是较小,也是相对静态数据,在内存还是妥妥可存的核心业务数据);


分布式缓存


  • 优点
  • 高可用:数据共享,不会因为业务机器重启丢失;
  • 大容量:可以水平扩展增加存储容量;
  • 缺点
  • 序列化cpu瓶颈(本系统大数据量+高调用量下尤其突出);
  • 网络开销:存在redis流量瓶颈(本系统大数据量+高调用量下尤其突出);


本地+分布式二级缓存


  • 优点
  • 结合两者优势,层次化加速;
  • 缺点
  • 对本系统代码侵入较大,实现较复杂;
  • 资源消耗:额外的缓存层级会占用更多计算和存储资源;


缓存方案比较

系统现状

image.png

结合业务场景和系统现状,提出以下三种方案。对多级架构、预热、击穿、刷新、运维多个角度分析。

方案1:本地缓存+guava refreshAfterWrite

image.png

1、架构

仅本地缓存。根据业务场景设置失效时间。


2、cache miss处理、刷新

使用Guava cache原生的refreshAfterWrite+异步reLoader机制,进行缓存的刷新,保证时效性。当对应key距离写入时间点存活超过TTL后,guava会自动执行我们在reLoader中写的业务逻辑,从提供实时数据的系统自动拉取最新的<key, value>,更新缓存值。


在本业务场景下,缓存的key&value设计有两种方案。


a. <key, value>。由于guava cache loader只能by key更新,所以,如果在单地域有N台机器,每个机器都查M个key,在缓存刷新时最大有M*N个查询请求打到提供实时数据的系统,无法使用批量查询能力,而M数量非常大,对下游压力会翻倍。


b. <"all_data"(hardCode), Map<key, value>>。这样可以使用到批量查询的能力,但是当某些<key, value>在本地缓存没有时,guava的loader就无法识别cache miss并从下游系统捞数据了。


3、预热

启动时全量预热。


4、运维

暴露dubbo/http服务,by host运维;或者重启机器。


因此:

  • 优点
  • 无redis相关cpu资源、网络资源损耗;
  • 直接使用了Guava cache原生的loader机制;
  • 缺点
  • 对下游压力翻倍;

由于对下游压力太大,放弃此方案。

方案2:二级缓存+刷新job

image.png

1、架构

本地+分布式二级缓存。本地缓存失效时间无穷大。


2、预热

启动时全量预热。


3、cache miss处理

不用guava cache loader。cache miss时业务上调用分布式缓存,再miss则调用下游服务。


4、刷新

使用spring单机job定时全量刷新缓存,保证一定时效性(数据变动频率很低,所以job频率设低即可)。但是由于本系统在间接引入quartz分布式定时任务框架时,没有直接支持单机job(quartz本身是支持的),所以需要额外使用spring单机job框架,会导致系统任务管理框架不统一。


5、运维

本地缓存:暴露dubbo/http服务,by host运维;或者重启机器。

分布式缓存:通过redis服务管理。


因此:

  • 优点
  • 本地缓存命中率很高,基本不会发生redis瓶颈。
  • 缺点
  • 业务自行load+write back。
  • 使用了新的定时任务框架(for单机),系统任务管理框架不统一。


方案3:二级缓存+guava expireAfterAccess

image.png

1、架构

本地+分布式二级缓存。根据业务设定本地缓存失效时间(expireAfterAccess)。


2、预热

启动时全量预热。这会导致应用重启,然后缓存预热后,部分本地缓存TTL可能批量到期失效,后面请求过来后可能直接大量击穿到下游服务,这是典型的缓存雪崩场景!

而且,当本地缓存雪崩,或者miss时,请求即使hit分布式缓存,也会导致redis相关序列化cpu瓶颈,会导致偶发的系统性能长尾。


3、cache miss处理

不用guava cache loader。cache miss时业务上调用分布式缓存,再miss则调用下游服务。


4、刷新

无刷新job。


5、运维

本地缓存:暴露dubbo/http服务,by host运维;或者重启机器。

分布式缓存:通过redis服务管理。


因此:

  • 优点
  • 不需要额外刷新job;
  • 不强依赖运维方案(因为本地和分布式缓存都有失效时间);
  • 缺点
  • 存在缓存雪崩风险;
  • redis相关序列化造成cpu瓶颈发生概率仍然较大;


落地方案

根据上述优缺点、改造量评估, 基本按照方案2来执行。


1、架构

本地+分布式二级缓存,以本地缓存为主,保证本地缓存极高命中率。


2、CacheMiss处理

业务自行处理,和现有链路保持一致,localCache -> redis -> dubbo,这样能够快速上线。


3、预热

应用启动,提供服务前预热。


4、刷新

基于SpringCronJob。


5、运维

per host运维,提供dubbo/http服务。

除此之外,对guava cache还进行了包装,各个业务场景的各种local cache,统一存储在一个Map容器Map<${prefix}, Cache<${key}, ${value}>>里,对现有的本地缓存也进行了重构,通过缓存包装层统一交互统一管理,增加可复用性和代码简洁度。


写在最后

本文对多种缓存方案的架构、预热、击穿、刷新、运维等进行了比较分析,最终进行工程落地,完成了容器场景高并发、大数据量下的系统性能极致提升。后续的优化点有:


1、其他系统瓶颈:压测pattern较单一,可能因为缓存掩盖其他依赖服务的性能瓶颈。未来会用更全面的压测pattern继续压榨系统性能。

2、批量刷新能力:对于方案1的批量刷新能力缺陷,caffeine其实有相关feature,见Bulk refresh这个issue。

3、运维方案:缺乏集群批量invalid能力,待建设。

4、架构统一:分布式和单机job使用同一个job管理框架。


这个方案的落地,特别要感谢团队同学的宝贵建议,是大家多次对技术方案“battle”后的结果。虽然笔者不是哈工大的,但借用哈工大的校训来总结,reviewers的意见、对技术的追求,如同追求“规格严格,功夫到家”。Creating great software is crafting a piece of art. 继续加油!





来源  |  阿里云开发者公众号
作者  |
 木将


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
78 6
|
2月前
|
监控 持续交付 API
深入理解微服务架构:构建高效、可扩展的系统
【10月更文挑战第14天】深入理解微服务架构:构建高效、可扩展的系统
86 0
|
19天前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构
|
1天前
|
人工智能 前端开发 编译器
【AI系统】LLVM 架构设计和原理
本文介绍了LLVM的诞生背景及其与GCC的区别,重点阐述了LLVM的架构特点,包括其组件独立性、中间表示(IR)的优势及整体架构。通过Clang+LLVM的实际编译案例,展示了从C代码到可执行文件的全过程,突显了LLVM在编译器领域的创新与优势。
17 3
|
2月前
|
缓存 Java Shell
Android 系统缓存扫描与清理方法分析
Android 系统缓存从原理探索到实现。
60 15
Android 系统缓存扫描与清理方法分析
|
6天前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型演进与经典架构
本文探讨了AI计算模式对AI芯片设计的重要性,通过分析经典模型结构设计与演进、模型量化与压缩等核心内容,揭示了神经网络模型的发展现状及优化方向。文章详细介绍了神经网络的基本组件、主流模型结构、以及模型量化和剪枝技术,强调了这些技术在提高模型效率、降低计算和存储需求方面的关键作用。基于此,提出了AI芯片设计应考虑支持神经网络计算逻辑、高维张量存储与计算、灵活的软件配置接口、不同bit位数的计算单元和存储格式等建议,以适应不断发展的AI技术需求。
21 5
|
15天前
|
传感器 算法 物联网
智能停车解决方案之停车场室内导航系统(二):核心技术与系统架构构建
随着城市化进程的加速,停车难问题日益凸显。本文深入剖析智能停车系统的关键技术,包括停车场电子地图编辑绘制、物联网与传感器技术、大数据与云计算的应用、定位技术及车辆导航路径规划,为读者提供全面的技术解决方案。系统架构分为应用层、业务层、数据层和运行环境,涵盖停车场室内导航、车位占用检测、动态更新、精准导航和路径规划等方面。
66 4
|
27天前
|
缓存 监控 测试技术
如何利用浏览器的缓存来优化网站性能?
【10月更文挑战第23天】通过以上多种方法合理利用浏览器缓存,可以显著提高网站的性能,减少网络请求,加快资源加载速度,提升用户的访问体验。同时,要根据网站的具体情况和资源的特点,不断优化和调整缓存策略,以适应不断变化的业务需求和用户访问模式。
77 7
|
25天前
|
前端开发 安全 关系型数据库
秒合约系统/开发模式规则/技术架构实现
秒合约系统是一种高频交易平台,支持快速交易、双向持仓和高杠杆。系统涵盖用户注册登录、合约创建与编辑、自动执行、状态记录、提醒通知、搜索筛选、安全权限管理等功能。交易规则明确,设有价格限制和强平机制,确保风险可控。技术架构采用高并发后端语言、关系型数据库和前端框架,通过智能合约实现自动化交易,确保安全性和用户体验。
|
2月前
|
存储 数据管理 调度
HarmonyOS架构理解:揭开鸿蒙系统的神秘面纱
【10月更文挑战第21天】华为的鸿蒙系统(HarmonyOS)以其独特的分布式架构备受关注。该架构包括分布式软总线、分布式数据管理和分布式任务调度。分布式软总线实现设备间的无缝连接;分布式数据管理支持跨设备数据共享;分布式任务调度则实现跨设备任务协同。这些特性为开发者提供了强大的工具,助力智能设备的未来发展。
96 1