深度学习项目中在yaml文件中定义配置,以及使用的python的PyYAML库包读取解析yaml配置文件

简介: 深度学习项目中在yaml文件中定义配置,以及使用的python的PyYAML库包读取解析yaml配置文件

1 yaml说明介绍

1.1 yaml介绍

1、百度百科对YAML解释

YAML"YAML Ain't a Markup Language"(YAML不是一种标记语言)的递归缩写。在开发的这种语言时,YAML 的意思其实是:"Yet Another Markup Language"仍是一种标记语言),但为了强调这种语言以数据做为中心,而不是以标记语言为重点,而用反向缩略语重命名。

YAML是一种数据序列化格式,优点是:

  • 对于人类可读性更友好
  • 方便与脚本语言进行交互使用

1.2 YAML 相关网址

2 YAML的python包PyYAML的使用

2.1 关于PyYAML的相关网址

PyYAML是关于一个操作yaml文件的python库包,相关网址如下:

2.2 安装PyYAML

1、安装yaml的python库包:PyYAML

pip install PyYAML

2、安装注意:

  • 1)虽然,在使用的时候是import yaml,但是安装的时候并不是直接安装yaml名的库包:pip install yaml这种安装方法是错误的,因为安装的并不是PyYAML库包
  • 2)在导入使用的时候,导入的名称为yaml,python中有很多这种安装包名和导入包名不一致的库包,例如opencv,我猜测可能是有人提前在pypi官网上传了某包名,因此导致被占用!

2.3 PyYAML快速使用

1、config.yaml配置文件中定义的可配值信息:

# train parameters setting
optimization: Adam
learning_rate: 0.001
batch_size: 64
epoch: 200

2、使用PyYAML模块解析config.yaml配置文件,主要步骤如下:

  • 使用open()打开config.yaml配置文件,然后使用read()读取
  • 使用yaml.load(stream, Loader)加载读取的配置文件数据,生成一个y的对象
  • 使用字典的形式访问生成的y对象中的配置信息

具体实现代码如下:

import yaml

yaml_path = "./config.yaml"

def read_yaml(yaml_path):
    # 使用open()函数读取config.yaml文件
    yaml_file = open(yaml_path, "r", encoding="utf-8")
    # 读取文件中的内容
    file_data = yaml_file.read()
    print(f"file_date type: {type(file_data)}\nfile_date value:\n{file_data}")
    yaml_file.close()

    # 加载数据流,返回字典类型数据
    y = yaml.load(file_data, Loader=yaml.FullLoader)
    print(f"y data type: {type(y)}\ny data value: {y}")

    # 下面就可以使用字典访问配置文件中的数据了
    print(f"optimization: {y['optimization']}")
    print(f"learning_rate: {y['learning_rate']}")
    print(f"batch_size: {y['batch_size']}")
    print(f"epoch: {y['epoch']}")

    optimization = y['optimization']
    learning_rate = y['learning_rate']
    batch_size = y['batch_size']
    epoch = y['epoch']

    print(type(optimization))
    print(type(learning_rate))
    return optimization, learning_rate, batch_size, epoch



if __name__ == '__main__':
    read_yaml(yaml_path)

输出结果

file_date type: <class 'str'>
file_date value:
# train parameters setting
optimization: Adam
learning_rate: 0.001
batch_size: 64
epoch: 200

y data type: <class 'dict'>
y data value: {
   'optimization': 'Adam', 'learning_rate': 0.001, 'batch_size': 64, 'epoch': 200}

optimization: Adam
learning_rate: 0.001
batch_size: 64
epoch: 200
<class 'str'>
<class 'float'>
目录
相关文章
|
4月前
|
网络安全 开发工具 git
在GitLab CI中同步HTTPS仓库地址的yaml配置
最后,提交并推送 `.gitlab-ci.yml`文件到您的GitLab仓库。GitLab CI/CD将自动识别这个文件,并在每次推送到 `master`分支时执行定义的同步任务。
240 16
|
4月前
|
JavaScript Java Maven
【SpringBoot(二)】带你认识Yaml配置文件类型、SpringMVC的资源访问路径 和 静态资源配置的原理!
SpringBoot专栏第二章,从本章开始正式进入SpringBoot的WEB阶段开发,本章先带你认识yaml配置文件和资源的路径配置原理,以方便在后面的文章中打下基础
475 3
|
4月前
|
Kubernetes 安全 网络协议
Kubernetes实用指令:通过dry-run生成部署与服务的YAML配置
总结起来, 使用 ` -- dry—run = client `- o yam l' 参数能够帮助用户预览 Kubernetes 资源定义并且确保它们符合预期效果且没有立即影响现有集群断层结构. 这种做法对于新手学习 K8s 资源规范、测试新策略或者审核现有策略都非常有效率与安全.
418 4
|
5月前
|
Java 测试技术 数据安全/隐私保护
通过yaml文件配置自动化测试程序
通过yaml文件可以将自动化测试环境,测试数据和测试行为分开,请看一下案例
175 4
|
11月前
|
数据采集 JSON API
深入解析:使用 Python 爬虫获取淘宝店铺所有商品接口
本文介绍如何使用Python结合淘宝开放平台API获取指定店铺所有商品数据。首先需注册淘宝开放平台账号、创建应用并获取API密钥,申请接口权限。接着,通过构建请求、生成签名、调用接口(如`taobao.items.search`和`taobao.item.get`)及处理响应,实现数据抓取。代码示例展示了分页处理和错误处理方法,并强调了调用频率限制、数据安全等注意事项。此技能对开发者和数据分析师极具价值。
|
6月前
|
数据处理 开发工具 开发者
requirement.txt 管理python包依赖
在 Python 项目中,`requirements.txt` 用于记录依赖库及其版本,便于环境复现。本文介绍了多种生成该文件的方法:基础方法使用 `pip freeze`,进阶方法使用 `pipreqs`,专业方法使用 `poetry` 或 `pipenv`,以及手动维护方式。每种方法适用不同场景,涵盖从简单导出到复杂依赖管理,并提供常见问题的解决方案,帮助开发者高效生成精准的依赖列表,确保项目环境一致性。
1980 4
|
12月前
|
存储 索引 Python
Python入门:6.深入解析Python中的序列
在 Python 中,**序列**是一种有序的数据结构,广泛应用于数据存储、操作和处理。序列的一个显著特点是支持通过**索引**访问数据。常见的序列类型包括字符串(`str`)、列表(`list`)和元组(`tuple`)。这些序列各有特点,既可以存储简单的字符,也可以存储复杂的对象。 为了帮助初学者掌握 Python 中的序列操作,本文将围绕**字符串**、**列表**和**元组**这三种序列类型,详细介绍其定义、常用方法和具体示例。
Python入门:6.深入解析Python中的序列
|
11月前
|
机器学习/深度学习 数据采集 自然语言处理
基于Python的情感分析与情绪识别技术深度解析
本文探讨了基于Python的情感分析与情绪识别技术,涵盖基础概念、实现方法及工业应用。文中区分了情感分析与情绪识别的核心差异,阐述了从词典法到深度学习的技术演进,并通过具体代码展示了Transformers架构在细粒度情感分析中的应用,以及多模态情绪识别框架的设计。此外,还介绍了电商评论分析系统的构建与优化策略,包括领域自适应训练和集成学习等方法。未来,随着深度学习和多模态数据的发展,该技术将更加智能与精准。
724 1
|
12月前
|
存储 人工智能 程序员
通义灵码AI程序员实战:从零构建Python记账本应用的开发全解析
本文通过开发Python记账本应用的真实案例,展示通义灵码AI程序员2.0的代码生成能力。从需求分析到功能实现、界面升级及测试覆盖,AI程序员展现了需求转化、技术选型、测试驱动和代码可维护性等核心价值。文中详细解析了如何使用Python标准库和tkinter库实现命令行及图形化界面,并生成单元测试用例,确保应用的稳定性和可维护性。尽管AI工具显著提升开发效率,但用户仍需具备编程基础以进行调试和优化。
758 9
|
12月前
|
Java API 数据处理
深潜数据海洋:Java文件读写全面解析与实战指南
通过本文的详细解析与实战示例,您可以系统地掌握Java中各种文件读写操作,从基本的读写到高效的NIO操作,再到文件复制、移动和删除。希望这些内容能够帮助您在实际项目中处理文件数据,提高开发效率和代码质量。
368 4

推荐镜像

更多