Flink SQL 在快手实践问题之Window TVF改进窗口聚合功能如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink SQL 在快手实践问题之Window TVF改进窗口聚合功能如何解决

问题一:Group Window Aggregate在Flink中有哪些局限性?


Group Window Aggregate在Flink中有哪些局限性?


参考回答:

Group Window Aggregate在Flink 1.12及更早版本中用于窗口聚合,但其存在两个主要局限性:一是语法不符合SQL标准,需要借助特殊窗口函数和窗口辅助函数;二是窗口函数只能出现在group by子句中,限制了其应用范围。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/667009



问题二:Window TVF是如何改进窗口聚合功能的?


Window TVF是如何改进窗口聚合功能的?


参考回答:

Window TVF(Table-valued Function)是基于2017年SQL标准中的多态表函数语法提出的,它不仅支持在窗口上进行聚合,还可以进行窗口关联、TopN和去重等操作,相比Group Window Aggregate提供了更灵活和强大的功能。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/667010



问题三:快手为什么在Group Window Aggregate上继续进行功能扩展?


快手为什么在Group Window Aggregate上继续进行功能扩展?


参考回答:

快手在今年下半年才开始进行Flink版本的升级,大部分业务仍在使用1.10版本。因此,为了支持现有业务并提升性能,快手在Group Window Aggregate上进行了功能扩展,包括支持多维聚合和引入高阶窗口函数。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/667011



问题四:快手在Group Window Aggregate中如何支持多维分析?


快手在Group Window Aggregate中如何支持多维分析?


参考回答:

快手在Group Window Aggregate中增加了多维分析功能,支持标准的Grouping Sets、Rollup和CUBE子句,并支持各种窗口类型(如滚动、滑动、会话窗口等)。例如,通过CUMULATE窗口函数和Grouping Sets子句,可以统计主题维度和总维度下的累计UV。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/667013


问题五:快手引入的CUMULATE窗口函数解决了什么问题?


快手引入的CUMULATE窗口函数解决了什么问题?


参考回答:

CUMULATE窗口函数解决了传统方案在绘制累计指标曲线时遇到的几个关键问题,包括历史回溯时曲线不平滑、自增曲线上出现凹坑等。它通过在每个时间点上计算累计值,并确保这些值在后续时间点上不发生变化,从而避免了因更新机制导致的曲线异常。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/667014

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
12天前
|
SQL 存储 Apache
基于 Flink 进行增量批计算的探索与实践
本文整理自阿里云高级技术专家、Apache Flink PMC朱翥老师在Flink Forward Asia 2024的分享,内容分为三部分:背景介绍、工作介绍和总结展望。首先介绍了增量计算的定义及其与批计算、流计算的区别,阐述了增量计算的优势及典型需求场景,并解释了为何选择Flink进行增量计算。其次,详细描述了当前的工作进展,包括增量计算流程、执行计划生成、控制消费数据量级及执行进度记录恢复等关键技术点。最后,展示了增量计算的简单示例、性能测评结果,并对未来工作进行了规划。
419 5
基于 Flink 进行增量批计算的探索与实践
|
26天前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。
397 2
探索Flink动态CEP:杭州银行的实战案例
|
5天前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
112 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
1月前
|
SQL 存储 缓存
Flink SQL Deduplication 去重以及如何获取最新状态操作
Flink SQL Deduplication 是一种高效的数据去重功能,支持多种数据类型和灵活的配置选项。它通过哈希表、时间窗口和状态管理等技术实现去重,适用于流处理和批处理场景。本文介绍了其特性、原理、实际案例及源码分析,帮助读者更好地理解和应用这一功能。
128 14
|
1月前
|
流计算 开发者
【开发者评测】实时计算Flink场景实践和核心功能体验测评获奖名单公布!
【开发者评测】实时计算Flink场景实践和核心功能体验测评获奖名单公布!
|
2月前
|
运维 数据挖掘 网络安全
场景实践 | 基于Flink+Hologres搭建GitHub实时数据分析
基于Flink和Hologres构建的实时数仓方案在数据开发运维体验、成本与收益等方面均表现出色。同时,该产品还具有与其他产品联动组合的可能性,能够为企业提供更全面、更智能的数据处理和分析解决方案。
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1544 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
186 56
|
19天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。

热门文章

最新文章