流计算引擎数据问题之MillWheel 和 Flink 实现数据流的同步处理如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 流计算引擎数据问题之MillWheel 和 Flink 实现数据流的同步处理如何解决

问题一:流计算引擎中数据完整性推理的难点是什么?


流计算引擎中数据完整性推理的难点是什么?


参考回答:

在流计算中,数据完整性推理的难点在于如何实现一种完整性信号生成算法,能够给出尽可能精确的完整性估计。目前还不存在绝对正确的完整性推理算法,大多数方案都是启发式的。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/654076


问题二:MillWheel 和 Flink 如何实现数据流的同步处理?


MillWheel 和 Flink 如何实现数据流的同步处理?


参考回答:

MillWheel 和 Flink 使用了低水印去实现整个数据流拓扑处理进度的同步。低水印以特殊流元素或旁路传播的方式,让整个数据流拓扑中的每个算子都可以清晰地了解到当前数据处理的进度。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/654077


问题三:Spark Structured Streaming 和 Kafka 在数据完整性推理上有何不足?


Spark Structured Streaming 和 Kafka 在数据完整性推理上有何不足?


参考回答:

Spark Structured Streaming 和 Kafka Streams 采用了宽限时间方案,虽然简化了架构构建和维护的复杂性,降低了用户对完整性的理解成本,但在完整性推理功能上存在一些不足,如全局水印的设计可能导致不正确的聚合结果。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/654078

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
28天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
934 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
2月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
2月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
59 1
|
2月前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
50 1
|
2月前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
47 0
|
2月前
|
数据挖掘 物联网 数据处理
深入探讨Apache Flink:实时数据流处理的强大框架
在数据驱动时代,企业需高效处理实时数据流。Apache Flink作为开源流处理框架,以其高性能和灵活性成为首选平台。本文详细介绍Flink的核心特性和应用场景,包括实时流处理、强大的状态管理、灵活的窗口机制及批处理兼容性。无论在实时数据分析、金融服务、物联网还是广告技术领域,Flink均展现出巨大潜力,是企业实时数据处理的理想选择。随着大数据需求增长,Flink将继续在数据处理领域发挥重要作用。
|
2月前
|
SQL 分布式计算 大数据
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(一)
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(一)
50 0
|
2月前
|
大数据 流计算
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(二)
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(二)
46 0
|
3月前
|
SQL 安全 数据处理
揭秘数据脱敏神器:Flink SQL的神秘力量,守护你的数据宝藏!
【9月更文挑战第7天】在大数据时代,数据管理和处理尤为重要,尤其在保障数据安全与隐私方面。本文探讨如何利用Flink SQL实现数据脱敏,为实时数据处理提供有效的隐私保护方案。数据脱敏涉及在处理、存储或传输前对敏感数据进行加密、遮蔽或替换,以遵守数据保护法规(如GDPR)。Flink SQL通过内置函数和表达式支持这一过程。
87 2