LLM大模型部署实战指南:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化,Dify赋能应用开发

简介: 【8月更文挑战第5天】LLM大模型部署实战指南:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化,Dify赋能应用开发

LLM大模型部署实战指南:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化,Dify赋能应用开发

1. Ollama 部署的本地模型(🔺)

Ollama 是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。,这是 Ollama 的官网地址:https://ollama.com/

  • 以下是其主要特点和功能概述:

    1. 简化部署:Ollama 目标在于简化在 Docker 容器中部署大型语言模型的过程,使得非专业用户也能方便地管理和运行这些复杂的模型。
    2. 轻量级与可扩展:作为轻量级框架,Ollama 保持了较小的资源占用,同时具备良好的可扩展性,允许用户根据需要调整配置以适应不同规模的项目和硬件条件。
    3. API支持:提供了一个简洁的 API,使得开发者能够轻松创建、运行和管理大型语言模型实例,降低了与模型交互的技术门槛。
    4. 预构建模型库:包含一系列预先训练好的大型语言模型,用户可以直接选用这些模型应用于自己的应用程序,无需从头训练或自行寻找模型源

1.1 一键安装

curl: (77) error setting certificate verify locations:CAfile: /data/usr/local/anaconda/ssl/cacert.pemCApath: none
报错原因: cacert.pem 的寻址路径 CAfile 不对,也就是在该路径下找不到文件。

  • 解决方法:
  1. 找到你的 cacert.pem 文件所在位置 /path/to/cacert.pem。如果你没有该证书,可以先在 https://curl.se/ca/cacert.pem 下载,保存在某个目录中。
  2. 设置环境变量
    export CURL_CA_BUNDLE=/path/to/cacert.pem
    #将"/path/to/cacert.pem"替换为你的证书文件的实际路径。
    export CURL_CA_BUNDLE=/www/anaconda3/anaconda3/ssl/cacert.pem
    
  • 执行下载
    curl -fsSL https://ollama.com/install.sh | sh
    

1.2 手动安装

ollama中文网:https://ollama.fan/getting-started/linux/

  1. 下载 ollama 二进制文件:Ollama 以自包含的二进制文件形式分发。将其下载到您的 PATH 中的目录:
sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama

sudo chmod +x /usr/bin/ollama
  1. 将 Ollama 添加为启动服务(推荐):为 Ollama 创建一个用户:
sudo useradd -r -s /bin/false -m -d /usr/share/ollama ollama

3.在 /etc/systemd/system/ollama.service 中创建一个服务文件:

#vim ollama.service 

[Unit]

Description=Ollama Service
After=network-online.target

[Service]
ExecStart=/usr/bin/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3

[Install]
WantedBy=default.target
  1. 然后启动服务:

    sudo systemctl daemon-reload
    sudo systemctl enable ollama
    
  2. 启动 Ollama¶
    使用 systemd 启动 Ollama:

    sudo systemctl start ollama
    
  3. 更新,查看日志

#再次运行
sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama
sudo chmod +x /usr/bin/ollama

#要查看作为启动服务运行的 Ollama 的日志,请运行:
journalctl -u ollama
  1. 步骤7:关闭 Ollama 服务
    ```

    关闭ollama服务

    service ollama stop


## 1.3 Linux内网离线安装Ollama

1. 查看服务器CPU的型号

查看Linux系统CPU型号命令,我的服务器cpu型号是x86_64

lscpu


2. 步骤2:根据CPU型号下载Ollama安装包,并保存到目录

下载地址: https://github.com/ollama/ollama/releases/

x86_64 CPU选择下载ollama-linux-amd64

aarch64|arm64 CPU选择下载ollama-linux-arm64


![](https://ai-studio-static-online.cdn.bcebos.com/9021442175c54d0ba3d51949253c22c48089d26df88f47bda2bdbb6dc78be0ad)

有网机器下载过来也一样

wget https://ollama.com/download/ollama-linux-amd64

下载到离线服务器上:/usr/bin/ollama  ollama就是你下载的ollama-linux-amd64 改名了(mv),其他步骤一致

## 1.4 修改存储路径
Ollama模型默认存储在:
* macOS: ~/.ollama/models
* Linux: /usr/share/ollama/.ollama/models
* Windows: C:\Users\<username>\.ollama\models

如果 Ollama 作为 systemd 服务运行,则应使用以下命令设置环境变量systemctl:

1. 通过调用 来编辑 systemd 服务systemctl edit ollama.service。这将打开一个编辑器。

2. Environment对于每个环境变量,在部分下添加一行[Service]:
>直接在“/etc/systemd/system/ollama.service”增了2行:

[Service]
Environment="OLLAMA_HOST=0.0.0.0:7861"
Environment="OLLAMA_MODELS=/www/algorithm/LLM_model/models"

3. 保存并退出。

4. 重新加载systemd并重新启动 Ollama:

systemctl daemon-reload
systemctl restart ollama


参考链接:https://github.com/ollama/ollama/blob/main/docs/faq.md

5. 使用 systemd 启动 Ollama:

sudo systemctl start ollama


6. 终止

终止(ollama加载的大模型将会停止占用显存,此时ollama属于失联状态,部署和运行操作失效,会报错:

Error: could not connect to ollama app, is it running?需要启动后,才可以进行部署和运行操作

systemctl stop ollama.service

* 终止后启动(启动后,可以接着使用ollama 部署和运行大模型)

systemctl start ollama.service


## 1.5 启动LLM

* 下载模型

ollama pull llama3.1
ollama pull qwen2

![](https://ai-studio-static-online.cdn.bcebos.com/ce30d57e09ad4c14aabc5c7d6594fe0342b346533b2b4af583e2e7797d7f1cb2)


* 运行大模型

ollama run llama3.1
ollama run qwen2

![](https://ai-studio-static-online.cdn.bcebos.com/02e5c358c3c14fe2b10d0db97cbd6eaf55509f94c088417d9a674d0aac477be5)


* 查看是否识别到大模型: `ollama list`,  如果成功, 则会看到大模型

ollama list
NAME ID SIZE MODIFIED
qwen2:latest e0d4e1163c58 4.4 GB 3 hours ago


* 使用该`ollama ps`命令查看当前已加载到内存中的模型。

NAME ID SIZE PROCESSOR UNTIL
qwen2:latest e0d4e1163c58 5.7 GB 100% GPU 3 minutes from now


*  nvidia-smi查看

+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.86.10 Driver Version: 535.86.10 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 Tesla V100-SXM2-32GB On | 00000000:00:08.0 Off | 0 |
| N/A 35C P0 56W / 300W | 5404MiB / 32768MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+

+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| 0 N/A N/A 3062036 C ...unners/cuda_v11/ollama_llama_server 5402MiB |
+---------------------------------------------------------------------------------------+



* 启动后,我们可验证是否可用:

curl http://10.80.2.195:7861/api/chat -d '{
"model": "llama3.1",
"messages": [
{ "role": "user", "content": "why is the sky blue?" }
]
}'


## 1.6 更多其他配置

**Ollama 可以设置的环境变量**:

* `OLLAMA_HOST`:这个变量定义了Ollama监听的网络接口。通过设置OLLAMA_HOST=0.0.0.0,我们可以让Ollama监听所有可用的网络接口,从而允许外部网络访问。

* `OLLAMA_MODELS`:这个变量指定了模型镜像的存储路径。通过设置OLLAMA_MODELS=F:\OllamaCache,我们可以将模型镜像存储在E盘,避免C盘空间不足的问题。

* `OLLAMA_KEEP_ALIVE`:这个变量控制模型在内存中的存活时间。设置OLLAMA_KEEP_ALIVE=24h可以让模型在内存中保持24小时,提高访问速度。

* `OLLAMA_PORT`:这个变量允许我们更改Ollama的默认端口。例如,设置OLLAMA_PORT=8080可以将服务端口从默认的11434更改为8080。

* `OLLAMA_NUM_PARALLEL`:这个变量决定了Ollama可以同时处理的用户请求数量。设置OLLAMA_NUM_PARALLEL=4可以让Ollama同时处理两个并发请求。

* `OLLAMA_MAX_LOADED_MODELS`:这个变量限制了Ollama可以同时加载的模型数量。设置OLLAMA_MAX_LOADED_MODELS=4可以确保系统资源得到合理分配。

>Environment="OLLAMA_PORT=9380" 没有用

* 这样指定:`Environment="OLLAMA_HOST=0.0.0.0:7861"`


* 指定 GPU
本地有多张 GPU,如何用指定的 GPU 来运行 Ollama? 在Linux上创建如下配置文件,并配置环境变量 CUDA_VISIBLE_DEVICES 来指定运行 Ollama 的 GPU,再重启 Ollama 服务即可【测试序号从0还是1开始,应是从0开始】。

vim /etc/systemd/system/ollama.service
[Service]
Environment="CUDA_VISIBLE_DEVICES=0,1"



## 1.7 Ollama常见命令


1. 重启 ollama

systemctl daemon-reload
systemctl restart ollama


2. 重启 ollama 服务

ubuntu/debian

sudo apt update
sudo apt install lsof
stop ollama
lsof -i :11434
kill
ollama serve


* Ubuntu

sudo apt update
sudo apt install lsof
stop ollama
lsof -i :11434
kill
ollama serve


3. 确认服务端口状态:

netstat -tulpn | grep 11434


4. 配置服务

为使外网环境能够访问到服务,需要对 HOST 进行配置。

打开配置文件:

vim /etc/systemd/system/ollama.service


根据情况修改变量 Environment:

服务器环境下:

Environment="OLLAMA_HOST=0.0.0.0:11434"


虚拟机环境下:

Environment="OLLAMA_HOST=服务器内网IP地址:11434"


## 1.8 卸载Ollama

如果决定不再使用Ollama,可以通过以下步骤将其完全从系统中移除:

(1)停止并禁用服务:

sudo systemctl stop ollama
sudo systemctl disable ollama

(2)删除服务文件和Ollama二进制文件:

sudo rm /etc/systemd/system/ollama.service
sudo rm $(which ollama)

(3)清理Ollama用户和组:

sudo rm -r /usr/share/ollama
sudo userdel ollama
sudo groupdel ollama

通过以上步骤,不仅能够在Linux平台上成功安装和配置Ollama,还能够灵活地进行更新和卸载。


# 2.OpenLLM 部署

OpenLLM 于 2023 年 6 月开源,是一个用于部署大语言模型的框架。目前,该项目在 GitHub 上已经获得了 9.6K星标。其最初的口号是通过一行代码或相对轻松地在不同的大语言模型之间切换,为个人用户提供方便。OpenLLM是一个用于在生产环境中操作大型语言模型(LLM)的开放平台,它可以轻松地微调、服务、部署和监控任何LLM。

![](https://ai-studio-static-online.cdn.bcebos.com/78feba514f714bc3ac503b2dfd570b5154505ac491eb423ab35909e0af13292f)

* 安装

pip install openllm # or pip3 install openllm
openllm hello

* 支持模型
    * Llama-3.1
    * Llama-3
    * Phi-3
    * Mistral
    * Gemma-2
    * Qwen-2
    * Gemma
    * Llama-2
    * Mixtral

![](https://ai-studio-static-online.cdn.bcebos.com/070f8a372c314181af834b16ae371b6f3bda85c63f414e90b940f24b99277e9c)



* 在 设置 > 模型供应商 > OpenLLM 中填入:

    * 模型名称:

    * 服务器 URL:http://<Machine_IP>:3333 替换成您的机器 IP 地址 "保存" 后即可在应用中使用该模型。

OpenLLM 提供了一个内置的 Python 客户端,允许您与模型进行交互。在不同的终端窗口或 Jupyter notebook 中,创建一个客户端以开始与模型交互:

```python
import openllm
client = openllm.client.HTTPClient('http://localhost:3000')
client.query('Explain to me the difference between "further" and "farther"')
  • 可以使用 openllm query 命令从终端查询模型:
    export OPENLLM_ENDPOINT=http://localhost:3000
    openllm query 'Explain to me the difference between "further" and "farther"'
    

    使用 openllm models 命令查看 OpenLLM 支持的模型及其变体列表。

3.LocalAI 部署

LocalAI 是一个本地推理框架,提供了 RESTFul API,与 OpenAI API 规范兼容。它允许你在消费级硬件上本地或者在自有服务器上运行 LLM(和其他模型),支持与 ggml 格式兼容的多种模型家族。不需要 GPU。 Dify 支持以本地部署的方式接入 LocalAI 部署的大型语言模型推理和 embedding 能力。

  1. 首先拉取 LocalAI 代码仓库,并进入指定目录
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/langchain-chroma
  1. 下载demo LLM 和 Embedding 模型(仅供参考)
    wget https://huggingface.co/skeskinen/ggml/resolve/main/all-MiniLM-L6-v2/ggml-model-q4_0.bin -O models/bert
    wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
    
  1. 配置 .env 文件

    mv .env.example .env
    

    NOTE:请确保 .env 中的 THREADS 变量值不超过您本机的 CPU 核心数。

  2. 启动 LocalAI
    ```

    start with docker-compose

    $docker-compose up -d --build

tail the logs & wait until the build completes

docker logs -f langchain-chroma-api-1
7:16AM INF Starting LocalAI using 4 threads, with models path: /models
7:16AM INF LocalAI version: v1.24.1 (9cc8d9086580bd2a96f5c96a6b873242879c70bc)

┌───────────────────────────────────────────────────┐
│ Fiber v2.48.0 │
http://127.0.0.1:8080
│ (bound on host 0.0.0.0 and port 8080) │
│ │
│ Handlers ............ 55 Processes ........... 1 │
│ Prefork ....... Disabled PID ................ 14 │
└───────────────────────────────────────────────────┘

开放了本机 http://127.0.0.1:8080 作为 LocalAI 请求 API 的端点。

并提供了两个模型,分别为:

* LLM 模型:ggml-gpt4all-j

    对外访问名称:gpt-3.5-turbo(该名称可自定义,在 models/gpt-3.5-turbo.yaml 中配置。

* Embedding 模型:all-MiniLM-L6-v2

    对外访问名称:text-embedding-ada-002(该名称可自定义,在 models/embeddings.yaml 中配置。

>使用 Dify Docker 部署方式的需要注意网络配置,确保 Dify 容器可以访问到localAI 的端点,Dify 容器内部无法访问到 localhost,需要使用宿主机 IP 地址。

5. LocalAI API 服务部署完毕,在 Dify 中使用接入模型

在 设置 > 模型供应商 > LocalAI 中填入:

* 模型 1:ggml-gpt4all-j
    * 模型类型:文本生成
    * 模型名称:gpt-3.5-turbo
    * 服务器 URL:http://127.0.0.1:8080
    * 若 Dify 为 docker 部署,请填入 host 域名:http://your-LocalAI-endpoint-domain:8080,可填写局域网 IP 地址,如:http://192.168.1.100:8080

* 模型 2:all-MiniLM-L6-v2
    * 模型类型:Embeddings
    * 模型名称:text-embedding-ada-002
    * 服务器 URL:http://127.0.0.1:8080
    * 若 Dify 为 docker 部署,请填入 host 域名:http://your-LocalAI-endpoint-domain:8080,可填写局域网 IP 地址,如:http://192.168.1.100:8080

>如需获取 LocalAI 更多信息,请参考:https://github.com/go-skynet/LocalAI

# 4.配置LLM+Dify(ollama 🔺)

* 确认服务端口状态:

netstat -tulnp | grep ollama

netstat -tulpn | grep 11434


![](https://ai-studio-static-online.cdn.bcebos.com/f46a0b42a88a4f739db09be69510ebe68631afeea2a64fa9be3ccef276d66385)


* 报错: "Error: could not connect to ollama app, is it running?"
>参考链接:https://stackoverflow.com/questions/78437376/run-ollama-run-llama3-in-colab-raise-err-error-could-not-connect-to-ollama

/etc/systemd/system/ollama.service文件是:

[Service]
ExecStart=/usr/local/bin/ollama serve
Environment="OLLAMA_HOST=0.0.0.0:7861"
Environment="OLLAMA_KEEP_ALIVE=-1"

* 运行指令

export OLLAMA_HOST=0.0.0.0:7861
ollama list
ollama run llama3.1

直接添加到环境变量也可以

vim ~/.bashrc
source ~/.bashrc


在 设置 > 模型供应商 > Ollama 中填入:

![](https://ai-studio-static-online.cdn.bcebos.com/d67bf7c414ef424ba680a5d7d72cfce284459fcc02d8427781fb43009fb97064)

![](https://ai-studio-static-online.cdn.bcebos.com/cd996de1f78b489e850fd070a27694c6d9cc6410278d4eeab335ee2b55c848bc)



* 模型名称:llama3.1
* 基础 URL:`http://<your-ollama-endpoint-domain>:11434`
    * 此处需填写可访问到的 Ollama 服务地址。
    * 若 Dify 为 docker 部署,建议填写局域网 IP 地址,如:`http://10.80.2.195:11434` 或 docker 宿主机 IP 地址,如:`http://172.17.0.1:11434`。
    * 若为本地源码部署,可填写 `http://localhost:11434`。

* 模型类型:对话

* 模型上下文长度:4096
    * 模型的最大上下文长度,若不清楚可填写默认值 4096。

* 最大 token 上限:4096

    * 模型返回内容的最大 token 数量,若模型无特别说明,则可与模型上下文长度保持一致。

* 是否支持 Vision:是

    * 当模型支持图片理解(多模态)勾选此项,如 llava。

* 点击 "保存" 校验无误后即可在应用中使用该模型。

* Embedding 模型接入方式与 LLM 类似,只需将模型类型改为 Text Embedding 即可。

![](https://ai-studio-static-online.cdn.bcebos.com/b01562bc79134a0592d42b43bd66a8a460ab1dc15c084fcdbd754dc6ef1f814d)


* 如果您使用Docker部署Dify和Ollama,您可能会遇到以下错误:

httpconnectionpool(host=127.0.0.1, port=11434): max retries exceeded with url:/cpi/chat (Caused by NewConnectionError(': fail to establish a new connection:[Errno 111] Connection refused'))

httpconnectionpool(host=localhost, port=11434): max retries exceeded with url:/cpi/chat (Caused by NewConnectionError(': fail to establish a new connection:[Errno 111] Connection refused'))
```
这个错误是因为 Docker 容器无法访问 Ollama 服务。localhost 通常指的是容器本身,而不是主机或其他容器。要解决此问题,您需要将 Ollama 服务暴露给网络。

4.1.多模型对比

参考单个模型部署一样,进行再一次配置添加即可

  • 需要注意的是添加完新的模型配置后,需要刷新dify网页,直接网页端刷新就好,新添加的模型就会加载进来

  • 可以看到调用后模型资源消耗情况

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

更多优质内容请关注CSDN:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

相关实践学习
Serverless极速搭建Hexo博客
本场景介绍如何使用阿里云函数计算服务命令行工具快速搭建一个Hexo博客。
相关文章
|
2月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
439 2
|
2月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
78 2
|
2月前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
27天前
|
自然语言处理 开发者
多模态大模型LLM、MLLM性能评估方法
针对多模态大模型(LLM)和多语言大模型(MLLM)的性能评估,本文介绍了多种关键方法和标准,包括模态融合率(MIR)、多模态大语言模型综合评估基准(MME)、CheckList评估方法、多模态增益(MG)和多模态泄露(ML),以及LLaVA Bench。这些方法为评估模型的多模态和多语言能力提供了全面的框架,有助于研究者和开发者优化和改进模型。
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
大模型强崩溃!Meta新作:合成数据有剧毒,1%即成LLM杀手
在人工智能领域,大型语言模型(LLMs)的快速发展令人瞩目,但递归生成数据可能导致“模型崩溃”。Meta的研究揭示,模型在训练过程中会逐渐遗忘低概率事件,导致数据分布偏差。即使少量合成数据(如1%)也会显著影响模型性能,最终导致崩溃。研究强调保留原始数据的重要性,并提出社区合作和技术手段来区分合成数据和真实数据。论文地址:https://www.nature.com/articles/s41586-024-07566-y
59 2
|
1月前
|
人工智能 自然语言处理 算法
政务培训|LLM大模型在政府/公共卫生系统的应用
本课程是TsingtaoAI公司面向某卫生统计部门的政府职员设计的大模型技术应用课程,旨在系统讲解大语言模型(LLM)的前沿应用及其在政府业务中的实践落地。课程涵盖从LLM基础知识到智能化办公、数据处理、报告生成、智能问答系统构建等多个模块,全面解析大模型在卫生统计数据分析、报告撰写和决策支持等环节中的赋能价值。
55 2
|
2月前
|
人工智能 自然语言处理 运维
前端大模型应用笔记(一):两个指令反过来说大模型就理解不了啦?或许该让第三者插足啦 -通过引入中间LLM预处理用户输入以提高多任务处理能力
本文探讨了在多任务处理场景下,自然语言指令解析的困境及解决方案。通过增加一个LLM解析层,将复杂的指令拆解为多个明确的步骤,明确操作类型与对象识别,处理任务依赖关系,并将自然语言转化为具体的工具命令,从而提高指令解析的准确性和执行效率。
|
2月前
|
人工智能 前端开发
大模型体验体验报告:OpenAI-O1内置思维链和多个llm组合出的COT有啥区别?传统道家理论+中学生物理奥赛题测试,名不虚传还是名副其实?
一个月前,o1发布时,虽然让人提前体验,但自己并未进行测试。近期终于有机会使用,却仍忘记第一时间测试。本文通过两个测试案例展示了o1的强大能力:一是关于丹田及练气的详细解答,二是解决一道复杂的中学生物理奥赛题。o1的知识面广泛、推理迅速,令人印象深刻。未来,或许可以通过赋予o1更多能力,使其在更多领域发挥作用。如果你有好的测试题,欢迎留言,一起探索o1的潜力。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
前端大模型入门(三):编码(Tokenizer)和嵌入(Embedding)解析 - llm的输入
本文介绍了大规模语言模型(LLM)中的两个核心概念:Tokenizer和Embedding。Tokenizer将文本转换为模型可处理的数字ID,而Embedding则将这些ID转化为能捕捉语义关系的稠密向量。文章通过具体示例和代码展示了两者的实现方法,帮助读者理解其基本原理和应用场景。
367 1
|
2月前
|
机器学习/深度学习 人工智能 架构师

热门文章

最新文章