并发编程终章:深入理解Java并发编程系列总纲

简介: 并发编程系列总纲

并发编程目录

磕磕绊绊近半年时间,在工作之余,前后一共写了十余篇深入Java并发编程系列的文章,由于内容颇多,所以在这里列一个目录方便诸位翻阅。

在学习并发编程时,大家都会接触一个关键字:volatile,使用它修饰的成员可以保证多线程之间可见,而想要理解它的实现之前,首先需要先掌握的就是Java的内存模型:JMM。所以volatile与JMM作为了并发系列的开篇:

多线程编程中,注定是会牵扯并发安全问题的,而在Java中提供了原生的synchronized关键字作为隐式锁,保证多线程之间的线程安全。其内部覆盖的知识面较多,需要理解的地方也并不少。第二/三篇文章则是围绕着synchronized关键字从基本的应用到JVM源码,全面的对它进行原理剖析:

再谈到Java的JUC并发包,其内部大量的应用了CAS机制作为基础实现并发组件,同时大名鼎鼎的无锁策略,也是采用CAS技术来保证线程执行的安全性,CAS机制就是无锁策略实现的关键。在Java中,CAS机制的实现是依赖于Unsafe魔法类提供的native操作实现,同时Unsafe类也是整个JUC原子包的核心。下面一篇文章则从CAS机制的初步探讨,到Unsafe魔法类以及Atomic原子包的源码分析进行了阐述:

前面谈到:CAS机制是JUC并发包的基石,那么接下来要叙述的AQS则是整个并发包的核心。AQS作为JUC包中的特殊存在,向下依赖了自旋以及CAS机制,向上则提供了一个同步器的实现,它并不直接对外提供服务,而是作为基础组件,为JUC包中的其他并发组件提供服务,如ReetrantLock、SemaphoreCountDownLatch等常用的并发工具。下面两篇文章分别从AQS独占式以及共享式两种模式,对AQS进行了全面分析:

谈完AQS后,前面文章中,解决并发安全问题的方案一共出现了隐式锁方案、无锁策略、显式独占锁以及共享锁模式四种,而紧接着要谈的ThreadLocal却反其道而行之,从共享变量拷贝副本的角度出发,避免了多线程竞争,从而解决了线程安全问题。它属于一种防止并发问题产生的的重要手段:

回归根本,在我们学习Java并发编程时,大家对于多线程的创建方式都不陌生,继承Thread类以及实现Runnable、Callable接口。但实际上,创建多线程的方式只有一种,那就是继承Thread类,因为只有这种方式才能真正的映射一条OS的内核线程执行,Runnable、Callable对象则只能被称为一个多线程任务。但无论创建哪种类型的任务都无法实现真正意义上的异步回调,而Java8中推出的CompletableFuture成为了真正划时代的方式。下面一篇文章对多线程任务进行了全面分析:

在多线程开发过程中,往往之前的容器如:HashMap、ArrayList等,在多线程环境中都会出现安全隐患,而HashTable、Vector等这类的安全容器则牺牲了大量的性能换取线程安全性,使用它们往往不能满足日益增长的用户需求。而在JUC包中也提供了大量的并发容器,它们在能够确保线程安全的同时也能在性能方面表现优良,第九篇则从源码角度全面的剖析了Java中的常见并发容器:

前述文章中,对于并发相关的工具都分析了个大概,接着来看看Java线程池家族中的ThreadPoolExecutor体系,线程池能够对Java程序中创建出的线程进行统一的管理、调度以及监控,同时也做到了将一条线程复用。下面的文章中,从创建无规则的线程隐患问题分析到线程池的源码解读,全面详解了ThreadPoolExecutor体系:

上章中详解了线程池家族的ThreadPoolExecutor体系,而在Java7中再次推出了Fork/Join框架,作为了Java中对分治思想的实现以及作为ThreadPoolExecutor体系补充,同时也为Java8中的并行流技术打下了扎实的基础。ForkJoinPool同时也能够在最大程度上发挥出多核机器的性能,其内部采用了工作窃取的算法保证了每条线程的工作饱和。但Fork/Join框架的整体实现过于庞大,下面通过两篇三万多字的文章进行阐述:

上述大部分文章中,绝大多数情况我们都是在围绕着多线程之间的线程安全问题进行撰写,但它们都是基于单体架构下的Java程序进行分析的,而如今单体架构的时代早已远去,一般目前Java程序都是通过多机器、分布式的架构模式进行部署。那么在多部署环境下,之前我们分析的CAS无锁、隐式锁、显式锁等方案是否还有效呢?答案是无效。在新的架构下,对于线程安全问题的解决则又需要推出新的方案:分布式锁。终篇的文章中从分布式架构下的安全问题阐述到Redis、Zookeeper实现分布式锁的原理分析进行了全面叙述:

至此,整个并发编程系列的文章告一段落,后续缺失的一部分有机会再来补充。

前述中一直在对于并发工具和并发安全问题进行阐述,而对于并发编程其他的一些问题忽略了,如死锁、活锁、锁饥饿等问题,也包括对于线程、进程、纤程、协程等一些概念未做叙述,而如今再在最后进行补充:

以上文章一般多以底层、原理源码等深度分析为主,虽不能保证绝对权威,但至少能为诸君理解Java并发编程的铺平道路!如果你对于文章中有存在疑义的地方可以在评论区指正留言!

同时如果你感觉文章对于你有帮助,欢迎点赞、评论、收藏、关注!

身体和心灵总要有一个在路上,要么旅行,要么学习!

相关文章
|
1月前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
36 0
|
1月前
|
Java 程序员
Java编程中的异常处理:从基础到高级
在Java的世界中,异常处理是代码健壮性的守护神。本文将带你从异常的基本概念出发,逐步深入到高级用法,探索如何优雅地处理程序中的错误和异常情况。通过实际案例,我们将一起学习如何编写更可靠、更易于维护的Java代码。准备好了吗?让我们一起踏上这段旅程,解锁Java异常处理的秘密!
|
27天前
|
存储 缓存 Java
Java 并发编程——volatile 关键字解析
本文介绍了Java线程中的`volatile`关键字及其与`synchronized`锁的区别。`volatile`保证了变量的可见性和一定的有序性,但不能保证原子性。它通过内存屏障实现,避免指令重排序,确保线程间数据一致。相比`synchronized`,`volatile`性能更优,适用于简单状态标记和某些特定场景,如单例模式中的双重检查锁定。文中还解释了Java内存模型的基本概念,包括主内存、工作内存及并发编程中的原子性、可见性和有序性。
Java 并发编程——volatile 关键字解析
|
1月前
|
算法 Java 调度
java并发编程中Monitor里的waitSet和EntryList都是做什么的
在Java并发编程中,Monitor内部包含两个重要队列:等待集(Wait Set)和入口列表(Entry List)。Wait Set用于线程的条件等待和协作,线程调用`wait()`后进入此集合,通过`notify()`或`notifyAll()`唤醒。Entry List则管理锁的竞争,未能获取锁的线程在此排队,等待锁释放后重新竞争。理解两者区别有助于设计高效的多线程程序。 - **Wait Set**:线程调用`wait()`后进入,等待条件满足被唤醒,需重新竞争锁。 - **Entry List**:多个线程竞争锁时,未获锁的线程在此排队,等待锁释放后获取锁继续执行。
65 12
|
27天前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
148 2
|
2月前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
|
1月前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
1月前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
63 3
|
2月前
|
缓存 Java 开发者
Java多线程并发编程:同步机制与实践应用
本文深入探讨Java多线程中的同步机制,分析了多线程并发带来的数据不一致等问题,详细介绍了`synchronized`关键字、`ReentrantLock`显式锁及`ReentrantReadWriteLock`读写锁的应用,结合代码示例展示了如何有效解决竞态条件,提升程序性能与稳定性。
235 6
|
1月前
|
开发框架 安全 Java
Java 反射机制:动态编程的强大利器
Java反射机制允许程序在运行时检查类、接口、字段和方法的信息,并能操作对象。它提供了一种动态编程的方式,使得代码更加灵活,能够适应未知的或变化的需求,是开发框架和库的重要工具。
67 4