【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构

简介: 【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240613151657343

摘要

在ShuffleNet v2的文章中作者指出现在普遍采用的FLOPs评估模型性能是非常不合理的,因为一批样本的训练时间除了看FLOPs,还有很多过程需要消耗时间,例如文件IO,内存读取,GPU执行效率等等。作者从内存消耗成本,GPU并行性两个方向分析了模型可能带来的非FLOPs的行动损耗,进而设计了更加高效的ShuffleNet v2。ShuffleNet v2的架构和DenseNet[4]有异曲同工之妙,而且其速度和精度都要优于DenseNet。

文章链接

论文地址:论文地址

代码地址代码地址

参考代码代码地址

基本原理

ShuffleNet V2是一种新颖的卷积神经网络(CNN)架构,旨在实现高效和准确的图像分类和目标检测任务。

  1. 构建模块:ShuffleNet V2的架构由构建模块组成,这些模块被堆叠起来构建整个网络。这些构建模块被设计为高效,允许使用更多的特征通道和更大的网络容量[T2]。

  2. 空间下采样:在ShuffleNet V2中,通过修改单元并将输出通道数量加倍来实现空间下采样。这种修改增强了网络的效率,同时保持准确性[T2]。

  3. 感受野增强:为了改善ShuffleNet V2在检测任务上的性能,通过在每个构建模块的逐点卷积之前引入额外的3x3深度卷积来扩大网络的感受野。这种增强被标记为ShuffleNet V2*,可以在几乎不增加计算成本的情况下提高准确性[T1]。

ShuffleNet v2结构

image-20240613151915287

观察 (c) 和 (d) 对网络的改进,我们发现了以下几点:

  1. 在 (c) 中,ShuffleNet v2 使用了通道分割(Channel Split)操作。这个操作将 (c) 个输入特征分成 (c - c') 和 (c') 两组,一般情况下 (c' = \frac{c}{2})。这种设计目的是为了尽量控制分支数,满足 G3。
  2. 分割后的两个分支中,左侧是一个直接映射,右侧是一个输入通道数和输出通道数均相同的深度可分离卷积,以满足 G1。
  3. 右侧的卷积中,1×1 卷积没有使用分组卷积,以满足 G2。
  4. 最后在合并时,使用拼接操作,以满足 G4。
  5. 在堆叠 ShuffleNet v2 时,通道拼接、通道洗牌和通道分割可以合并成一个 element-wise 操作,这也是为了满足 G4。

最后,当需要降采样时,通过不进行通道分割的方式来实现通道数量的加倍,如图 6(d) 所示,这个方法非常简单。

核心代码

# 定义 ShuffleNetV2 模块
class ShuffleNetV2(nn.Module):
    def __init__(self, inp, oup, stride):  # inp: 输入通道数, oup: 输出通道数, stride: 步长
        super().__init__()

        self.stride = stride

        # 计算每个分支的通道数
        branch_features = oup // 2
        # 确保步长为1时输入通道数是分支通道数的两倍
        assert (self.stride != 1) or (inp == branch_features << 1)

        if self.stride == 2:
            # 定义 branch1,当步长为2时
            self.branch1 = nn.Sequential(
                # 深度卷积,输入通道数等于输出通道数,步长为2
                nn.Conv2d(inp, inp, kernel_size=3, stride=self.stride, padding=1, groups=inp),
                nn.BatchNorm2d(inp),
                # 1x1 卷积,输出通道数等于 branch_features
                nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
                nn.BatchNorm2d(branch_features),
                nn.ReLU(inplace=True))
        else:
            # 步长为1时,branch1 为空
            self.branch1 = nn.Sequential()

        # 定义 branch2
        self.branch2 = nn.Sequential(
            # 1x1 卷积,步长为1,输出通道数等于 branch_features
            nn.Conv2d(inp if (self.stride == 2) else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
            # 深度卷积,步长为 stride,输出通道数等于 branch_features
            nn.Conv2d(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1, groups=branch_features),
            nn.BatchNorm2d(branch_features),
            # 另一个 1x1 卷积,步长为1
            nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
        )

    def forward(self, x):
        if self.stride == 1:
            # 当步长为1时,将输入在通道维度上分成两部分
            x1, x2 = x.chunk(2, dim=1)
            # 连接 x1 和 branch2 处理后的 x2
            out = torch.cat((x1, self.branch2(x2)), dim=1)
        else:
            # 当步长为2时,连接 branch1 和 branch2 的输出
            out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)

        # 进行通道混洗
        out = self.channel_shuffle(out, 2)

        return out

    def channel_shuffle(self, x, groups):
        # 获取输入张量的形状信息
        N, C, H, W = x.size()
        # 调整张量的形状,并交换通道维度
        out = x.view(N, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous().view(N, C, H, W)
        return out

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/139655578

相关文章
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
17天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
18天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
32 0
|
22天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
16天前
|
缓存 负载均衡 JavaScript
探索微服务架构下的API网关模式
【10月更文挑战第37天】在微服务架构的海洋中,API网关犹如一座灯塔,指引着服务的航向。它不仅是客户端请求的集散地,更是后端微服务的守门人。本文将深入探讨API网关的设计哲学、核心功能以及它在微服务生态中扮演的角色,同时通过实际代码示例,揭示如何实现一个高效、可靠的API网关。
|
14天前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
15天前
|
Dubbo Java 应用服务中间件
服务架构的演进:从单体到微服务的探索之旅
随着企业业务的不断拓展和复杂度的提升,对软件系统架构的要求也日益严苛。传统的架构模式在应对现代业务场景时逐渐暴露出诸多局限性,于是服务架构开启了持续演变之路。从单体架构的简易便捷,到分布式架构的模块化解耦,再到微服务架构的精细化管理,企业对技术的选择变得至关重要,尤其是 Spring Cloud 和 Dubbo 等微服务技术的对比和应用,直接影响着项目的成败。 本篇文章会从服务架构的演进开始分析,探索从单体项目到微服务项目的演变过程。然后也会对目前常见的微服务技术进行对比,找到目前市面上所常用的技术给大家进行讲解。
33 1
服务架构的演进:从单体到微服务的探索之旅
|
13天前
|
消息中间件 监控 安全
后端架构演进:从单体到微服务####
在数字化转型的浪潮中,企业应用的后端架构经历了从传统单体架构到现代微服务架构的深刻变革。本文探讨了这一演进过程的背景、驱动力、关键技术及面临的挑战,揭示了如何通过微服务化实现系统的高可用性、扩展性和敏捷开发,同时指出了转型过程中需克服的服务拆分、数据管理、通信机制等难题,为读者提供了一个全面理解后端架构演变路径的视角。 ####
34 8
|
14天前
|
Cloud Native 安全 API
云原生架构下的微服务治理策略与实践####
—透过云原生的棱镜,探索微服务架构下的挑战与应对之道 本文旨在探讨云原生环境下,微服务架构所面临的关键挑战及有效的治理策略。随着云计算技术的深入发展,越来越多的企业选择采用云原生架构来构建和部署其应用程序,以期获得更高的灵活性、可扩展性和效率。然而,微服务架构的复杂性也带来了服务发现、负载均衡、故障恢复等一系列治理难题。本文将深入分析这些问题,并提出一套基于云原生技术栈的微服务治理框架,包括服务网格的应用、API网关的集成、以及动态配置管理等关键方面,旨在为企业实现高效、稳定的微服务架构提供参考路径。 ####
42 5