基于CNN卷积神经网络的MQAM调制识别matlab仿真

简介: **理论**: 利用CNN自动识别MQAM调制信号,通过学习星座图特征区分16QAM, 64QAM等。CNN从原始数据提取高级特征,优于传统方法。 - **CNN结构**: 自动特征学习机制,适配多种MQAM类型。 - **优化**: 损失函数指导网络参数调整,提升识别准确度。 - **流程**: 大量样本训练+独立测试评估,确保模型泛化能力。- **展望**: CNN强化无线通信信号处理,未来应用前景广阔。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg
4.png

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含中文注释,训练库)

```digitDatasetPath = ['Image_train\'];
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders', true, 'LabelSource', 'foldernames');
%划分数据为训练集合验证集,训练集中每个类别包含1张图像,验证集包含其余图像的标签
numTrainFiles = 2;%设置每个类别的训练个数
[imdsTrain, imdsValidation] = splitEachLabel(imds,0.8);

%定义卷积神经网络的基础结构
layers = [
......................................................................
];

%设置训练参数
options = trainingOptions('sgdm', ...
'InitialLearnRate', 0.00005, ...
'MaxEpochs', 100, ...
'Shuffle', 'every-epoch', ...
'ValidationData', imdsValidation, ...
'ValidationFrequency', 10, ...
'Verbose', false, ...
'Plots', 'training-progress');

%使用训练集训练网络
[net,INFO]= trainNetwork(imdsTrain, layers, options);

IT =[1:length(INFO.TrainingLoss)];
LOSS=INFO.TrainingLoss;
Accuracy=INFO.TrainingAccuracy;

figure;
plot(IT(1:5:end),LOSS(1:5:end),'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('epoch');
ylabel('LOSS');

figure;
plot(IT(1:5:end),Accuracy(1:5:end),'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('epoch');
ylabel('Accuracy');

save CNN.mat
156

```

4.算法理论概述
基于卷积神经网络(Convolutional Neural Networks, CNN)的MQAM(Multi-Level Quadrature Amplitude Modulation)调制识别,是一种利用深度学习技术自动识别无线通信中信号调制类型的方法。MQAM作为一种高效的数字调制技术,通过不同的幅度和相位组合来传输信息,广泛应用于现代通信系统中。而CNN由于其在图像识别和特征提取方面的卓越能力,被成功应用于调制识别任务,通过学习信号波形的特征来区分不同的调制模式。下面详细介绍其工作原理及涉及的数学模型。

  MQAM调制识别任务的目标是从接收到的信号中识别出其调制类型,例如16QAM、64QAM等。传统方法往往依赖于精心设计的特征提取器和分类器,而CNN则能自动从原始数据中学习和提取高级特征,实现更高效和准确的识别。

   星座图是MQAM调制信号的二维散点图,横轴表示信号的I分量(In-phase),纵轴表示Q分量(Quadrature)。例如,16QAM的星座图有4个幅度等级,每个幅度等级有两个相位状态,形成一个典型的“十字”图案;32QAM和64QAM的星座图则更加密集,分别有16和36个等距分布的点。

4.1 CNN模型结构

5.png

4.2 损失函数与优化

6.png

4.3 训练与测试
训练阶段:通过大量标记的调制信号样本对模型进行训练,优化网络参数,使模型学会从信号中抽取与调制类型相关的特征。

测试阶段:在独立的测试集上评估模型性能,主要指标包括识别准确率、混淆矩阵等。

   基于CNN的MQAM调制识别,特别是针对星座图的识别,展示了深度学习在复杂信号处理任务中的强大潜力。通过自动学习调制信号的视觉特征,CNN不仅能够有效区分16QAM、32QAM和64QAM,还为处理更复杂的调制类型和实际通信环境下的信号识别提供了坚实的基础。随着技术的不断进步和模型优化,CNN在无线通信领域的应用将会更加广泛和深入。
相关文章
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
32 7
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
11天前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
11天前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
31 1
|
13天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
14天前
|
机器学习/深度学习 人工智能 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
24 1
|
18天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
13天前
|
机器学习/深度学习 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
35 0