基于GA遗传算法的WSN网络节点覆盖优化matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 本研究应用遗传优化算法于无线传感器网络(WSN),优化节点布局与数量,以最小化节点使用而最大化网络覆盖率。MATLAB2022a环境下,算法通过选择、交叉与变异操作,逐步改进节点配置,最终输出收敛曲线展现覆盖率、节点数及适应度值变化。无线传感器网络覆盖优化问题通过数学建模,结合遗传算法,实现目标区域有效覆盖与网络寿命延长。算法设计中,采用二进制编码表示节点状态,适应度函数考量覆盖率与连通性,通过选择、交叉和变异策略迭代优化,直至满足终止条件。

1.程序功能描述
通过遗传优化算法,优化WSN无线传感器网络中的各个节点的坐标位置以及数量,使得整个网络系统已最少数量的节点达到最大的网络覆盖率。仿真最后输出覆盖率收敛曲线,节点数量收敛曲线,GA优化前后的覆盖率变化情况。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

3.核心程序

```while gen < MAXGEN;
gen
Pe0 = 0.999;
pe1 = 0.001;
FitnV=ranking(Objv);
Selch=select('sus',Chrom,FitnV);
Selch=recombin('xovsp', Selch,Pe0);
Selch=mut( Selch,pe1);
phen1=bs2rv(Selch,FieldD);

  for a=1:1:NIND

xij = phen1(a,:);
X = xij(1:NN);
Y = xij(1+NN:NN+NN);
NNbest = round(xij(end));
%计算对应的目标值
[FGL,FGL2,IMG] = func_obj(X,Y,NNbest,R,W,H,Grids);
JJ(a,1) = FGL2;
JJ2(a,1) = FGL;
end

Objvsel=(JJ);
[Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);
gen=gen+1;

  %保存参数收敛过程和误差收敛过程以及函数值拟合结论
  index1      = isnan(JJ);
  index2      = find(index1 == 1);

JJ(index2) = [];
Error2(gen) = mean(JJ);
[V,I] = min(JJ);

NNbests=round(phen1(:,end));
Error0(gen) = mean(NNbests);
Error1(gen) = mean(JJ2);
end
figure;
plot(Error0(3:end),'b','linewidth',2);
xlabel('迭代次数');
ylabel('节点数量');
grid on

figure;
plot(Error1(3:end),'b','linewidth',2);
xlabel('迭代次数');
ylabel('覆盖率%');
grid on

figure;
plot(Error2(3:end),'b','linewidth',2);
xlabel('迭代次数');
ylabel('适应度值');
grid on

[V,I] = min(JJ);
Xo=phen1(I,1:NN);
Yo=phen1(I,1+NN:NN+NN);
NNbest=round(phen1(I,end));

figure
for i=1:NNbest
plot(Xo(i),Yo(i),'-r>',...
'LineWidth',1,...
'MarkerSize',5,...
'MarkerEdgeColor','r',...
'MarkerFaceColor',[0.9,0.9,0.0]);
hold on
circle([Xo(i),Yo(i)],R,1000,'m');
hold on
i=i+1;
end
axis([0,W,0,H]);

[FGL,FGL2,IMG] = func_obj(Xo,Yo,NNbest,R,W,H,Grids);
title(['优化后','节点数量:',num2str(NNbest),'覆盖率:',num2str(100*FGL),'%']);
12_016m

```

4.本算法原理
无线传感器网络(WSN)是由大量传感器节点组成的一种分布式网络,广泛应用于环境监测、智能交通、农业智能化等领域。节点覆盖优化是WSN中的一个重要问题,它旨在通过合理地部署和调整传感器节点的位置和工作状态,实现对目标区域的有效覆盖,并延长网络的生命周期。

4.1、遗传算法原理
遗传算法是一种模拟生物进化过程的优化算法,通过选择、交叉、变异等操作,不断生成新的解,并在搜索空间中寻找最优解。其基本流程包括初始化种群、计算适应度、选择操作、交叉操作、变异操作和终止条件判断。

4.2、WSN节点覆盖优化数学模型
为了对WSN节点覆盖优化问题进行数学建模,我们作如下假设:传感器节点部署在二维平面上,每个节点的感知范围是一个圆形区域,目标区域是一个矩形区域。我们的目标是最小化所需的工作节点数,同时保证目标区域被完全覆盖。

9d3a2f7f5d549ede7549711a6d70e262_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  覆盖约束:确保目标区域内的每个点至少被一个工作节点覆盖。连通性约束:保证工作节点之间能够相互通信,形成连通网络。这是一个典型的约束优化问题,我们可以采用遗传算法进行求解。

4.3、基于GA的WSN节点覆盖优化方法
编码方式:采用二进制编码,每个染色体表示一种节点的工作状态配置。
适应度函数:以适应度函数来衡量每个染色体的优劣,适应度函数综合考虑覆盖率和网络连通性。
选择操作:采用轮盘赌选择法,选择适应度较高的染色体进入下一代。
交叉操作:采用单点交叉,随机选择两个染色体的某一位置进行交换。
变异操作:以一定的概率对染色体中的某个基因进行取反操作。
终止条件:设定最大进化代数或适应度阈值作为终止条件。

相关文章
|
5天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
5天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
14天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
13天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
12天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
73 17
|
1月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
59 10
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
66 10
|
1月前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。