高并发架构设计三大利器:缓存、限流和降级问题之滑动窗口算法的原理是什么

简介: 高并发架构设计三大利器:缓存、限流和降级问题之滑动窗口算法的原理是什么

问题一:固定窗口限流算法有哪些缺点?

固定窗口限流算法有哪些缺点?


参考回答:

固定窗口限流算法的缺点在于存在明显的临界问题。例如,在窗口边界附近可能会产生大量的请求被允许通过,从而导致突发流量。这是因为计数器在每个时间窗口结束时清零,不考虑窗口内请求的具体分布。https://ucc.alicdn.com/pic/developer-ecology/6ibaby6qg4ku4_8d163146b4b04afc887e55e2891d9075.png


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/625527


问题二:固定窗口限流算法的临界问题有没有什么简单的案例能够直白的了解呀?

固定窗口限流算法的临界问题有没有什么简单的案例能够直白的了解呀?


参考回答:

假设限流阀值为5个请求,单位时间窗口是1秒。如果在0.8秒到1秒之间和1秒到1.2秒之间分别并发5个请求,虽然每个时间段内都没有超过阀值,但如果考虑0.8秒到1.2秒整个时间段,则并发数高达10个,这已经超过了单位时间1秒内不超过5个请求的限流定义。这就是固定窗口限流算法的临界问题。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/625528


问题三:滑动窗口算法是什么,它的主要目的是什么?

滑动窗口算法是什么,它的主要目的是什么?


参考回答:

滑动窗口算法是为了解决固定窗口算法的临界突变问题而引入的。它的主要目的是通过将单位时间周期拆分成若干粒度更细的子窗口,每个子窗口独立统计请求次数,并根据时间滑动删除过期的小周期,从而更平滑地限制单位时间内的请求量,提高限流的精确性。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/625529


问题四:滑动窗口算法的原理是什么?

滑动窗口算法的原理是什么?


参考回答:

滑动窗口算法的原理是将单位时间周期分为n个小周期,分别记录每个小周期内接口的访问次数,并根据时间滑动删除过期的小周期。当新的请求到来时,会检查当前小周期的请求次数是否超过限制,如果未超过则允许请求,否则拒绝请求。随着时间的推移,滑动窗口会向右滑动,不断更新小周期的请求次数。https://ucc.alicdn.com/pic/developer-ecology/6ibaby6qg4ku4_50ad8430a23f4750bfacca807632fdaf.png


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/625530


问题五:滑动窗口算法如何实现?

滑动窗口算法如何实现?


参考回答:

滑动窗口算法的实现可以通过使用一个队列(Queue)来存储请求的时间戳。当新的请求到来时,先删除队列中过期的时间戳(即超过窗口持续时间的时间戳),然后判断当前队列中的时间戳数量是否小于窗口大小。如果小于窗口大小,则将当前时间戳加入队列并允许请求;如果已经达到或超过窗口大小,则拒绝请求。示例代码:

// ...(省略了部分代码) 
public synchronized boolean tryAcquire() { 
// ...(省略了部分代码,包括获取当前时间戳和删除过期时间戳) 
if (timestamps.size() < windowSize) { // 判断当前窗口内请求数是否小于窗口大小 
timestamps.offer(currentTime); // 将当前时间戳加入队列 
return true; // 获取请求成功 
} 
return false; // 超过窗口大小,无法获取请求 
} 
// ...(完整的SlidingWindowRateLimiter类定义)


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/625532

相关文章
|
2月前
|
存储 算法
算法入门:专题二---滑动窗口(长度最小的子数组)类型题目攻克!
给定一个正整数数组和目标值target,找出总和大于等于target的最短连续子数组长度。利用滑动窗口(双指针)优化,维护窗口内元素和,通过单调性避免重复枚举,时间复杂度O(n)。当窗口和满足条件时收缩左边界,更新最小长度,最终返回结果。
|
8月前
|
机器学习/深度学习 监控 算法
员工上网行为监控软件中基于滑动窗口的C#流量统计算法解析​
在数字化办公环境中,员工上网行为监控软件需要高效处理海量网络请求数据,同时实时识别异常行为(如高频访问非工作网站)。传统的时间序列统计方法因计算复杂度过高,难以满足低延迟需求。本文将介绍一种基于滑动窗口的C#统计算法,通过动态时间窗口管理,实现高效的行为模式分析与流量计数。
245 2
|
7月前
|
人工智能 算法 Go
Go实现常见的限流算法
本文介绍了五种常见的限流算法:固定窗口、滑动窗口、漏桶算法、令牌桶和滑动日志。固定窗口简单高效,但可能产生两倍突发流量;滑动窗口可避免突发问题,但可能掐断流量;漏桶算法搭配生产者消费者模式实现平滑流量;令牌桶允许一定突发流量;滑动日志适用于多级限流场景。每种算法通过Go语言实现并附有代码解读,帮助理解其工作原理与适用场景。
141 6
|
6月前
|
存储 机器学习/深度学习 监控
公司电脑上网监控中滑动窗口算法的理论构建与工程实现
本文提出一种基于滑动窗口算法的实时网络流量监控框架,旨在强化企业信息安全防护体系。系统采用分层架构设计,包含数据采集、处理与分析决策三大模块,通过 Java 实现核心功能。利用滑动窗口技术动态分析流量模式,结合阈值检测与机器学习模型识别异常行为。实验表明,该方案在保证高检测准确率的同时支持大规模并发处理,为企业数字化转型提供可靠保障。
163 0
|
8月前
|
存储 机器学习/深度学习 监控
如何监控员工的电脑——基于滑动时间窗口的Java事件聚合算法实现探析​
在企业管理场景中,如何监控员工的电脑操作行为是一个涉及效率与合规性的重要课题。传统方法依赖日志采集或屏幕截图,但数据量庞大且实时性不足。本文提出一种基于滑动时间窗口的事件聚合算法,通过Java语言实现高效、低资源占用的监控逻辑,为如何监控员工的电脑提供一种轻量化解决方案。
220 3
|
9月前
|
存储 监控 算法
基于 PHP 语言的滑动窗口频率统计算法在公司局域网监控电脑日志分析中的应用研究
在当代企业网络架构中,公司局域网监控电脑系统需实时处理海量终端设备产生的连接日志。每台设备平均每分钟生成 3 至 5 条网络请求记录,这对监控系统的数据处理能力提出了极高要求。传统关系型数据库在应对这种高频写入场景时,性能往往难以令人满意。故而,引入特定的内存数据结构与优化算法成为必然选择。
254 3
|
12月前
|
算法
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
283 0
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
215 2
|
3月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
227 3

热门文章

最新文章