数据分析入门:用Python和Numpy探索音乐流行趋势

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 数据分析入门:用Python和Numpy探索音乐流行趋势

一、引言
音乐是文化的重要组成部分,而音乐流行趋势则反映了社会文化的变迁和人们审美的变化。通过分析音乐榜单,我们可以了解哪些歌曲或歌手正在受到大众的欢迎,甚至预测未来的流行趋势。Python作为一种强大的编程语言,结合其丰富的库,如Numpy,使得数据分析变得更加简单和高效。
Python与Numpy简介
Python是一种广泛使用的高级编程语言,以其清晰的语法和代码可读性而闻名。Numpy是一个开源的Python科学计算库,提供了强大的多维数组对象和相应的操作,是进行数据分析和科学计算的基础工具。
数据收集
在开始数据分析之前,我们需要收集相关的数据。音乐流行趋势的数据可以从多个来源获取,例如音乐流媒体服务的API、公开的音乐排行榜数据等。为了简化示例,我们将使用一个假设的音乐排行榜数据集。
数据获取
首先,我们需要从网易云音乐获取新歌榜的数据。这里我们使用Python的requests库来发送HTTP请求,并使用beautifulsoup4来解析返回的HTML页面。
```import requests
from bs4 import BeautifulSoup

代理服务器配置

proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"

构建代理字典

proxies = {
'http': f'http://{proxyUser}:{proxyPass}@{proxyHost}:{proxyPort}',
'https': f'https://{proxyUser}:{proxyPass}@{proxyHost}:{proxyPort}'
}

def fetch_music_data(url):

# 使用代理发送请求
response = requests.get(url, proxies=proxies)
soup = BeautifulSoup(response.text, 'html.parser')
music_list = []

for item in soup.find_all('li', class_='song-item'):
    song = {
        'title': item.find('span', class_='song-name').text.strip(),
        'artist': item.find('span', class_='singer-name').text.strip(),
        'rank': int(item.find('span', class_='index').text.strip())
    }
    music_list.append(song)

return music_list

url = 'https://music.163.com/discover/rank/#/discover/toplist'
music_data = fetch_music_data(url)

打印获取的数据

for song in music_data:
print(f"Title: {song['title']}, Artist: {song['artist']}, Rank: {song['rank']}")

 数据预处理
数据预处理是数据分析中的重要步骤,包括清洗数据、处理缺失值、数据类型转换等。以下是一个简单的数据预处理示例:
```python
import numpy as np

# 假设的数据集,包含歌曲名、排名和播放次数
data = np.array([
    ["Song A", 1, 1000],
    ["Song B", 2, 950],
    ["Song C", 3, 900],
    # 更多数据...
])

# 将排名转换为整数类型
data[:, 1] = data[:, 1].astype(int)
# 将播放次数转换为浮点数类型
data[:, 2] = data[:, 2].astype(float)

数据探索
在数据预处理之后,我们可以进行数据探索,以了解数据的基本特征和趋势。例如,我们可以计算平均播放次数,或者找出排名最高的歌曲。
```import requests
from bs4 import BeautifulSoup

def fetch_music_data(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
music_list = []

for item in soup.find_all('li', class_='song-item'):
    song = {
        'title': item.find('span', class_='song-name').text.strip(),
        'artist': item.find('span', class_='singer-name').text.strip(),
        'rank': int(item.find('span', class_='index').text.strip())
    }
    music_list.append(song)

return music_list

url = 'https://music.163.com/discover/rank/#/discover/toplist'
music_data = fetch_music_data(url)

数据可视化
数据可视化是理解数据和传达分析结果的重要手段。我们可以使用matplotlib库来创建图表。
```python
import matplotlib.pyplot as plt

# 绘制排名与播放次数的关系图
plt.figure(figsize=(10, 6))
plt.scatter(data[:, 1], data[:, 2], color='blue')
plt.title('Song Ranking vs Plays')
plt.xlabel('Ranking')
plt.ylabel('Plays')
plt.grid(True)
plt.show()

趋势分析
趋势分析可以帮助我们了解音乐流行趋势随时间的变化。假设我们有一段时间内的音乐数据,我们可以使用以下方法来分析趋势:

# 假设有一段时间序列的数据
time_series_data = np.array([
    ["2024-01", "Song A", 1000],
    ["2024-02", "Song A", 1100],
    # 更多时间序列数据...
])

# 提取时间序列并排序
time_series_data = time_series_data[np.argsort(time_series_data[:, 0])]

# 计算每月的播放次数变化
plays_change = time_series_data[:, 2] - time_series_data[:, 2][::-1]

# 绘制时间序列图
plt.figure(figsize=(12, 6))
plt.plot(time_series_data[:, 0], plays_change, marker='o', linestyle='-')
plt.title('Plays Change Over Time')
plt.xlabel('Time')
plt.ylabel('Change in Plays')
plt.grid(True)
plt.show()

结论
通过上述步骤,我们使用Python和Numpy对音乐流行趋势进行了基本的数据分析。从数据预处理到数据探索,再到数据可视化和趋势分析,我们不仅了解了如何操作数据,还学会了如何通过图表来直观地展示分析结果。

相关文章
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
10天前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
21 2
|
16天前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
|
1月前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
44 7
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
90 3
|
4月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
73 1
|
4月前
|
机器学习/深度学习 数据可视化 数据挖掘
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
62 2
|
4月前
|
数据可视化 数据挖掘 Python
逆袭之路!Python数据分析新手如何快速掌握Matplotlib、Seaborn,让数据说话更响亮?
在数据驱动时代,掌握数据分析技能至关重要。对于Python新手而言,Matplotlib和Seaborn是数据可视化的两大利器。Matplotlib是最基本的可视化库,适合绘制基础图表;Seaborn则提供高层次接口,专注于统计图形和美观样式。建议先学Matplotlib再过渡到Seaborn。快速上手Matplotlib需多实践,示例代码展示了绘制折线图的方法。Seaborn特色功能包括分布图、关系图及分类数据可视化,并提供多种主题和颜色方案。两者结合可实现复杂数据可视化,先用Seaborn绘制统计图,再用Matplotlib进行细节调整。熟练掌握这两者,将显著提升你的数据分析能力。
61 4
|
4月前
|
数据可视化 数据挖掘 Python
惊呆了!Python数据分析师如何用Matplotlib、Seaborn秒变数据可视化大师?
在数据驱动时代,分析师们像侦探一样在数字海洋中寻找线索,揭示隐藏的故事。数据可视化则是他们的“魔法棒”,将复杂数据转化为直观图形。本文将带你探索Python数据分析师如何利用Matplotlib与Seaborn这两大神器,成为数据可视化大师。Matplotlib提供基础绘图功能,而Seaborn在此基础上增强了统计图表的绘制能力,两者结合使数据呈现更高效、美观。无论是折线图还是箱形图,这两个库都能助你一臂之力。
53 4
|
5月前
|
数据可视化 数据挖掘 API
Python数据分析:数据可视化(Matplotlib、Seaborn)
数据可视化是数据分析中不可或缺的一部分,通过将数据以图形的方式展示出来,可以更直观地理解数据的分布和趋势。在Python中,Matplotlib和Seaborn是两个非常流行和强大的数据可视化库。本文将详细介绍这两个库的使用方法,并附上一个综合详细的例子。