魔搭社区利用 NVIDIA TensorRT-LLM 加速开源大语言模型推理

简介: 魔搭社区于 2022 年 11 月初创建,首次在业界提出了 “模型即服务”( MaaS, Model as a Service)的理念。

“魔搭社区是中国最大的模型开源社区,致力给开发者提供模型即服务的体验。魔搭社区利用 NVIDIA TensorRT-LLM,大大提高了大语言模型的推理性能,方便了模型应用部署,提高了大模型产业应用效率,更大规模地释放大模型的应用价值。”


周文猛,魔搭社区技术负责人,阿里巴巴通义实验室技术总监

魔搭上线 TensorRT-LLM,支持开源LLM模型推理加速

魔搭社区于 2022 年 11 月初创建,首次在业界提出了 “模型即服务”( MaaS, Model as a Service)的理念。在过去一年半的时间里,MaaS 这一理念不仅实现了技术落地,也被行业广泛接纳,并成为与 IaaS、SaaS、PaaS 服务的又一新的技术范式。

2023 年 7 月,Meta 宣布开源 Llama 2 模型,改变了整个大语言模型(LLM)行业的竞争格局。通过繁荣的开源生态,大语言模型迎来了群策群力的技术迭代和突破。

国内外优秀的大语言模型,如 ChatGLM、零一万物、书生·浦语系列、通义千问等,都将魔搭社区作为开源模型首发平台。魔搭社区成为了大模型发展的技术风向标,在中国的开发者群体中,形成了广泛的 “找模型,用模型,上魔搭社区” 的观念认同,从而建成了中国最大开源模型社区。

魔搭社区现在上线了 NVIDIA TensorRT-LLM,TensorRT-LLM 提供了易于使用的应用程序编程接口 (API),以定义和运行大语言模型,支持社区上的各类开源大语言模型(LLM)的推理加速。

查看用户指南:https://modelscope.cn/brand/view/TensorRT-LLM?from=alizishequ__text

目前 TensoRT-LLM 在魔搭社区上已支持的模型类型和推理精度,几乎涵盖了所有主流的大语言/多模态模型以及常用的量化方法,包括 FP32、FP16、BF16、INT8 和 INT4,适用于不同的环境。

LLM 模型推理面临的挑战

计算资源消耗巨大:开源大语言模型参数规模越来越大,比如Qwen1.5-110B 参数规模高达千亿级,对计算资源的需求庞大。在没有优化的情况下直接部署,不仅成本高昂,而且对硬件要求高。

推理延迟高:大语言模型的推理时间长,尤其是在实时交互式应用中,如聊天机器人、语音助手等,高延迟会严重影响用户体验。

能效比低:计算密集型工作流意味着更高的能耗,这对于追求绿色计算和可持续发展的现代数据中心而言是一个重要问题。

部署复杂度高:模型优化、适配不同硬件平台、以及持续维护升级等都是挑战,尤其对于非专业用户来说,部署一个高性能的语言模型服务并不容易。

TensorRT-LLM 如何提升 LLM 模型推理效率

1. 极致性能优化:TensorRT-LLM 是基于 TensorRT API 生态系统构建的,专为大规模语言模型优化的推理引擎。它利用 GPU 的强大并行计算能力,通过算法优化、层融合、量化等技术显著减少模型推理所需的计算量和内存占用,从而提升推理速度,降低延迟。

2. 高效率与低功耗:通过精心设计的优化策略,TensorRT-LLM能够在不牺牲模型精度的前提下,大幅提高能效比,这对于数据中心的成本控制和环境友好至关重要。

3. 简化部署流程:提供一键式的模型优化与部署工具,简化了从训练到推理的整个流程。即便是复杂的模型结构,开发者也能轻松地将其部署到GPU 上,大大降低了技术门槛,加速了产品上市时间。

4. 广泛兼容性与可扩展性:支持魔搭社区的多种主流的深度学习框架和开源模型架构,如 Transformer 系列模型。TensorRT-LLM 设计灵活,便于未来适应更多先进的模型技术和算法创新的更新,保持技术领先性。

在 TensorRT-LLM 和 Triton 推理服务器的加持下,魔搭社区正在为开发者提供更为全面、高效、快捷的模型推理部署方案。

未来,魔搭社区计划将在生成式 AI 的模型和软件加速库层面,与 NVIDIA 相关团队继续开展合作,推动大语言模型的广泛应用和落地。

点击或复制链接到浏览器,查看用户指南:https://modelscope.cn/brand/view/TensorRT-LLM?from=alizishequ__text

相关文章
|
2天前
|
存储 弹性计算 调度
基于Knative的LLM推理场景弹性伸缩方案
Knative的基于请求弹性配置与大语言模型(LLM)的推理场景高度契合。此外,它的资源降配特性可以显著帮助用户降低成本。本文详细介绍基于 Knative 的 LLM 推理场景弹性伸缩方案。
|
12天前
|
人工智能 知识图谱 Docker
KAG:增强 LLM 的专业能力!蚂蚁集团推出专业领域知识增强框架,支持逻辑推理和多跳问答
KAG 是蚂蚁集团推出的专业领域知识服务框架,通过知识增强提升大型语言模型在特定领域的问答性能,支持逻辑推理和多跳事实问答,显著提升推理和问答的准确性和效率。
233 46
KAG:增强 LLM 的专业能力!蚂蚁集团推出专业领域知识增强框架,支持逻辑推理和多跳问答
|
3天前
|
并行计算 API 调度
加速大语言模型推理:NVIDIATensorRT-LLM更新
本次分享由NVIDIA亚太区资深总监李曦鹏主讲,聚焦于加速大语言模型推理的挑战与解决方案。内容涵盖大模型推理优化、性能提升策略及KVCash在用户请求处理中的应用。通过TensorRT-LLM的更新,NVIDIA提供了高性能推理引擎和多种优化技术,如KVCache优化、InflightBatching等,大幅提升了大模型的推理效率。此外,还介绍了与魔搭社区的合作,支持超过50个主流模型的一键部署,显著降低了使用门槛和成本。
|
1月前
|
人工智能 自然语言处理 前端开发
CodeArena:在线 LLM 编程竞技场!用于测试不同开源 LLM 的编程能力,实时更新排行榜
CodeArena 是一个在线平台,用于测试和比较不同大型语言模型(LLM)的编程能力。通过实时显示多个 LLM 的代码生成过程和结果,帮助开发者选择适合的 LLM,并推动 LLM 技术的发展。
62 7
CodeArena:在线 LLM 编程竞技场!用于测试不同开源 LLM 的编程能力,实时更新排行榜
|
26天前
|
JSON 人工智能 算法
探索大型语言模型LLM推理全阶段的JSON格式输出限制方法
本篇文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
|
1月前
|
机器学习/深度学习 存储 缓存
ORCA:基于持续批处理的LLM推理性能优化技术详解
大语言模型(LLMs)的批处理优化面临诸多挑战,尤其是由于推理过程的迭代性导致的资源利用不均问题。ORCA系统通过引入迭代级调度和选择性批处理技术,有效解决了这些问题,大幅提高了GPU资源利用率和系统吞吐量,相比FasterTransformer实现了最高37倍的性能提升。
168 26
|
4天前
|
机器学习/深度学习 人工智能 缓存
基于英特尔平台加速 AI 应用及 LLM 推理性能介绍|龙蜥大讲堂第115期
本文摘自龙蜥大讲堂英特尔 AI 软件工程师黄文欢的分享,主要包括以下三个方面的内容: 1. 第五代英特尔至强处理器 2. LLM 推理加速框架 xFast Transformer 及其优化策略 3. 性能数据及 Demo 展示
|
3月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
797 2
|
3月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
111 2
|
3月前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。