实时计算 Flink版产品使用问题之在使用Flink on yarn模式进行内存资源调优时,如何进行优化

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:flink的applcation model模式和sql client可以一起用吗

flink的applcation model模式和sql client可以一起用吗,如何使用呢,如果不能使用,生产环境pre-job和session模式哪个模式会更好



参考答案:

Apache Flink 支持多种部署模式,包括 Application Model、Per-Job 和 Session 模式。Application Model 模式是一种新的部署方式,主要解决了 Per-Job 模式中的一些问题,并且目前 Application 模式已经支持 Yarn 和 K8s 的部署方式。Flink 的 SQL Client 可以处理用 SQL 语言编写的查询语句,这些查询需要嵌入用 Java 或 Scala 编写的程序中。

在生产环境中,选择 Pre-job 还是 Session 模式取决于具体的应用场景和需求。如果你需要长时间运行的任务,并且希望任务在出现问题时能够自动恢复,那么 Pre-job 模式可能更适合你。相反,如果你的任务是短周期的或者对实时性有较高要求,那么 Session 模式可能更为合适。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586977



问题二:使用flink on yarn的模式,怎么进行内存资源调优呢,如何配置flink内存

使用了三台机器搭建flink on yarn,想在生产环境进行调优,如何设置呢,或者说怎么调优最为合理,配置文件如何去修改,还请社区中有经验的大佬指教



参考答案:

在使用Flink on yarn模式进行内存资源调优时,可以配置Flink的参数来优化内存使用。以下是一些关键参数的配置指导:

  1. JobManager参数:
  • jobmanager.heap.mb:用于设置JobManager的堆内存大小,一般建议不要配置得太大,1-2G足够。
  • jobmanager.rpc.address:指定JobManager的地址。
  • jobmanager.rpc.port:指定JobManager的端口。
  1. TaskManager参数:
  • taskmanager.heap.mb:用于设置TaskManager的堆内存大小,大小应根据任务量进行合理的配置。
  • taskmanager.numberOfTaskSlots:指定TaskManager的slot数量,在yarn模式下会受到yarn.scheduler.maximum-allocation-vcores值的影响。
  • taskmanager.memory.process.size:用于配置Flink TaskManager任务的总内存,Flink框架会根据默认比例划分各个区域的内存,但有时默认划分可能不适应特定需求,因此可能需要手动调整以避免资源浪费。
  1. 资源配置:
  • 提交方式可以选择yarn-per-job,并在使用脚本提交Flink任务时指定资源分配。为任务分配合适的资源是性能调优的第一步,适当增加资源的分配通常与性能提升成正比。确保实现了最优资源配置后,再考虑进一步的性能调优策略。

通过合理配置上述参数,您可以更好地优化Flink on yarn模式下的内存资源使用,从而提高任务执行效率和性能。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586970



问题三:有没有做Flink CDC 和kettle对比?

有没有大佬做Flink CDC 和kettle对比?各个维度的



参考答案:

Flink CDC和Kettle都是常用的数据同步工具,但它们在处理方式和能力上存在一些主要的区别。

Flink CDC是Apache Flink的一组连接器,主要用于捕获数据库的变更数据,如MySQL、Postgres等。其优势在于支持全量和增量一体化同步,即首先读取数据库中表的历史全量数据,再无缝衔接到读取表的增量数据,为用户提供实时的、一致性的快照。同时,Flink CDC支持分布式架构、支持事务,并且生态友好。然而,Flink CDC 1.x版本在不加锁的情况下可以满足大部分场景,但是牺牲了一定的数据准确性。

相比之下,Kettle是一款开源的ETL工具,可以进行数据的抽取、转换和加载等操作。它支持多种数据库,包括MySQL、Oracle、Microsoft SQL Server等,并且可以通过图形化界面进行任务调度和管理。然而,Kettle在处理大规模数据时可能会遇到性能瓶颈。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586810



问题四:Flink CDC这个可以打印 但是就是sink不进去?

Flink CDC这个可以打印 但是就是sink不进去?



参考答案:

taskmanager.heap.size 和 jobmanager.heap.size 这两个参数你改改看



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586809



问题五:请问postgresqlFlink CDC 能直接读取华为的 gaussdb 吗?

请问postgresqlFlink CDC 能直接读取华为的 gaussdb 吗?



参考答案:

不能



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586808

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
3月前
|
Java 流计算
利用java8 的 CompletableFuture 优化 Flink 程序
本文探讨了Flink使用avatorscript脚本语言时遇到的性能瓶颈,并通过CompletableFuture优化代码,显著提升了Flink的QPS。文中详细介绍了avatorscript的使用方法,包括自定义函数、从Map中取值、使用Java工具类及AviatorScript函数等,帮助读者更好地理解和应用avatorscript。
利用java8 的 CompletableFuture 优化 Flink 程序
|
3月前
|
存储 缓存 监控
Flink如何优化?需要注意哪些方面?
【10月更文挑战第10天】Flink如何优化?需要注意哪些方面?
104 6
|
2月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
165 9
|
3月前
|
资源调度 分布式计算 大数据
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
146 0
|
5月前
|
图形学 C# 开发者
Unity粒子系统全解析:从基础设置到高级编程技巧,教你轻松玩转绚丽多彩的视觉特效,打造震撼游戏画面的终极指南
【8月更文挑战第31天】粒子系统是Unity引擎的强大功能,可创建动态视觉效果,如火焰、爆炸等。本文介绍如何在Unity中使用粒子系统,并提供示例代码。首先创建粒子系统,然后调整Emission、Shape、Color over Lifetime等模块参数,实现所需效果。此外,还可通过C#脚本实现更复杂的粒子效果,增强游戏视觉冲击力和沉浸感。
366 0
|
存储 缓存 资源调度
想了解流计算,你必须得看一眼,实现Flink on Yarn的三种部署方式,并运行wordcount
想了解流计算,你必须得看一眼,实现Flink on Yarn的三种部署方式,并运行wordcount
979 0
想了解流计算,你必须得看一眼,实现Flink on Yarn的三种部署方式,并运行wordcount
|
资源调度 Java 流计算
Flink on Yarn运行机制
  从图中可以看出,Yarn的客户端需要获取hadoop的配置信息,连接Yarn的ResourceManager。所以要有设置有 YARN_CONF_DIR或者HADOOP_CONF_DIR或者HADOOP_CONF_PATH,只要设置了其中一个环境变量,就会被读取。
1939 0
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1544 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
5天前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
112 0
Flink CDC 在阿里云实时计算Flink版的云上实践

相关产品

  • 实时计算 Flink版