大模型时代,如何让AI客服“听懂人话”、“更有温度”?

简介: 大模型时代,如何让AI客服“听懂人话”、“更有温度”?

大语言模型浪潮袭来,驱动客服行业发生变革。自2019年以来,随着参数量的扩大,大语言模型推理、文本生成能力开始涌现。然而,从底层模型的技术跃迁,到最终的商业应用与业务落地,仍存在一系列的产品能力、技术架构的升级。因此,我们需要思考的问题是:如何通过技术提升服务品质、效率,降低服务成本,最终实现从技术跃迁到商业价值的转换?
从企业角度来看,基于技术驱动的客服场景,核心的业务价值有三点:成本、效率、业务增长。当AI大模型应用于客服场景后,还带来了数据安全的问题。对此,Quick Service v2.0提出了“1+2”服务套件解决方案,通过Quick Service Agent服务平台,打造两套核心能力:通过AI Chat提升对话理解与问答能力,应对客户复杂指令;通过AI Pilot识别用户诉求,为客服人员提供生成式服务解决方案,最终帮助企业解决成本、效率与业务增长问题,实现降本增效。

image.png


用户习惯转人工?

AI Chat全新问答能力,让服务“接得住”“接得好”


长久以来,企业AI客服面临的一大痛点是:“机器人根本没有用,用户还是习惯转人工,该怎么办?”解决这一问题的关键,在于将问题进行分类,让大小模型“各司其职”:事实类的问题通过小模型处理,开放性、主观性的问题通过大模型进行处理。作为Quick Service v2.0的核心能力之一的AI Chat,便通过大小模型的融合具备了“全新的AI问答能力”:它既能解决已有“标准答案”的基础规则问题,也能通过复杂对话的理解以及多模态的生成能力,使智能客服拥有更强大的对话理解与问答能力。
数据显示,相比于传统机器人,AI Chat问答准确率提升63%,用户对机器人将不再反感,服务自然能“接得住”“接得好”。比如,处于扩张期的某知名餐饮品牌,便通过AI Chat产品能力,将覆盖业务70%以上复杂且高频的问题交付给机器人解决,从而在客服人员减少的情况下,有效提升了服务效率,保证了服务质量。
image.png

复杂指令不理解、个性推荐没温度?

AI Chat全新指令与推荐能力,实现效率与业务双增长


拥有自己IT团队的企业,往往会通过一些开源框架,对大模型的能力进行调用。但是在此过程中,较常出现的问题是:“我己经开始使用大模型做知识准备,但大模型输出不是我想要的,怎么办?”如果把朴素RAG比作休闲的“社区足球”,那么模块化RAG就是专业的“世界杯”,两者在准确程度上存在一定差异。比如,许多应用大模型的企业多为大型企业,说明书非常复杂,此时如果直接调用朴素RAG能力,难以保障识别与理解的准确率;而通过模块化RAG对固定版式进行专门调优,便能对结果、生成内容进行更加准确的控制。
以创建代办场景为例,此前,企业往往通过固定的SOP,指示用户通过点击操作,当用户偏离航道后,机器人将很难对此类场景进行处理。而新的大小模型融合的Quick Service v2.0 AI Chat机器人能够很好规避此类风险,它不仅能够理解用户复杂的指令,还能通过上下文识别用户新会话与新指令,并通过卡片形式与用户进行再次确认,帮助用户自助解决率提升40%

image.png

在指令问题外,AI Chat还能通过历史对话,形成关于用户的年龄、性别等信息记忆,进而根据企业业务活动表格,帮助用户进行个性化推荐。此外,它还能针对生成答案进行编排与控制,比如告知活动信息时顺便查阅天气,提醒用户出行事项。这一更具个性化、温度感的推荐方式,能够帮助企业营销转化率提升13%

image.png


客服接线时长居高不下?服务满意度低?

AI Pilot三大能力,有效提升坐席辅助效率


经过调查发现,客服对客户的问题进行理解、定位,平均花费100秒;翻看查找企业的规范规则后回复用户,平均花费170秒;与上下游部门进行协同,平均花费80秒。可以说,“企业客服的接线平均时长高居不下,满意度和成本都受影响”,成为许多企业普遍面临的问题。对此,我们提供了AI大模型、小模型与AI工作台相结合的解决方案,形成了新的Quick Service AI工作台,通过AI Pilot的客服能力,有效提升了服务效率。
首先,AI Pilot可以提供全新智能辅助能力,为客服人员提供全方位的业务指引和实施辅助。客服人员只需对侧边栏插件AI生成的答案进行校验,即可直接发送给用户,即使在繁重任务之下,依旧可以处理多个并发需求。数据显示,该方式能有效提升服务解决率、服务效率提升16%,某新能源汽车品牌便通过AI Pilot对客户问题进行实时识别,帮助热线客服有效提高了服务效率,改善了用户体验。

image.png

其次,AI Pilot具备全新智能填单能力。在上下游协同过程中,AI大模型可根据对话信息的自动识别,自动填充工单标题、摘要,快速精准概括总结当前问题,将客服人员从繁重的填单工作中解放出来。

image.png

第三,AI Pilot拥有全新智能摘要与总结能力。客服人员以及被转交的服务人员无需翻阅历史对话,即可通过AI总结的摘要了解问题,提供针对性服务。

image.png

目前,Quick Service v2.0已在汽车、餐饮、家电等不同行业落地,帮助企业打造出“能共情”的用户体验,实现了智能推荐、智能填单、内部运营等场景降本增效。随着大模型的不断完善,Quick Service v2.0还将为更智能客服时代的普及提供技术支持与落地探索,帮助企业进一步提升服务品质与效率、降低服务成本,成为大模型时代企业首选的智能客户体验专家。

相关文章
|
5月前
|
人工智能 自然语言处理 运维
阿里云 X 瓴羊:AI Stack一体机上新解决方案,重构企业问数与客服交互
简介:瓴羊基于阿里云AI Stack推出智能问数与智能客服一体机,以“低成本、零门槛”实现数据分析与客服效率的显著提升,助力企业智能化升级。
558 0
|
3月前
|
人工智能 自然语言处理 机器人
AI电话客服的服务质量提升路径:关键技术与典型应用场景解析
AI电话客服正从基础语音工具进化为能处理复杂业务的智能体。本文深入解析服务质量提升的关键技术路径与行业应用,涵盖语音识别、情感分析、多轮对话等核心技术,以及智能外呼、自动质检、客户数据分析等典型场景,助力零售、电商、制造、互联网等行业构建高效、有温度的智能客服体系,推动人机协同服务升级。
287 1
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
从0搭建AI智能客服教程(AI智能客服系统选型和实战指南)
针对智能客服技术与业务脱节的痛点,合力亿捷通过 NLP、知识图谱及人机协同策略,助企业实现首次解决率超 70%、人力成本降 43%、年省成本超千万。其方案提升制造业问题解决率 40%,投诉转接成功率达 99%,以分场景选型助力超万家企业平衡业务与成本,成行业首选。
|
6月前
|
缓存 自然语言处理 监控
基于通义大模型的智能客服系统构建实战:从模型微调到API部署
本文详细解析了基于通义大模型的智能客服系统构建全流程,涵盖数据准备、模型微调、性能优化及API部署等关键环节。通过实战案例与代码演示,展示了如何针对客服场景优化训练数据、高效微调大模型、解决部署中的延迟与并发问题,以及构建完整的API服务与监控体系。文章还探讨了性能优化进阶技术,如模型量化压缩和缓存策略,并提供了安全与合规实践建议。最终总结显示,微调后模型意图识别准确率提升14.3%,QPS从12.3提升至86.7,延迟降低74%。
1976 15
|
5月前
|
人工智能 自然语言处理 语音技术
深度解析:AI语音客服系统如何重塑客户服务体验与主流解决方案探析
在数字化浪潮下,AI语音客服凭借高效、便捷、24小时在线的优势,成为企业提升服务效率、优化体验的重要工具。本文详解其核心技术、应用价值、选型要点及市场主流方案,如阿里云通义晓蜜、合力亿捷等,助力企业智能化升级。
451 1
|
5月前
|
人工智能 自然语言处理 监控
生成式AI客服实战:智能客服机器人5大自动化能力处理80%高频咨询,释放60%客服人力
生成式AI驱动的智能客服机器人通过五大核心能力自动化处理80%高频咨询,释放60%客服人力。以合力亿捷方案为例,融合大模型与业务知识图谱,实现服务精准化、决策智能化,推动企业服务成本下降超40%。
530 0
|
3月前
|
SQL 人工智能 自然语言处理
阿里云 CIO 蒋林泉:AI 大模型时代,我们如何用 RIDE 实现 RaaS 的首次落地?
本文整理自阿里云智能集团 CIO 蒋林泉在 AICon 2025 深圳的演讲,分享了阿里云在大模型应用落地中的实践经验。通过多个数字人项目案例,探讨了企业在 AI 应用中的组织转型、业务识别、产品定义与工程落地等关键环节,并提出了 RIDE 方法论(重组、识别、定义、执行),助力企业实现 AI 有效落地。

热门文章

最新文章