二分查找变种大赏!Python 中那些让你效率翻倍的搜索绝技!

简介: 【7月更文挑战第12天】二分查找是高效搜索算法,适用于有序数组。基础原理是对比中间元素,按目标值大小在左右两侧递归查找。

在编程中,搜索是一项常见且重要的操作。二分查找作为一种高效的搜索算法,有着多种变种,能够在不同的场景中发挥作用,极大地提高搜索效率。下面我们来详细解答关于二分查找变种的一些常见问题。

问题一:什么是二分查找及其基本原理?

二分查找是一种在有序数组中查找某一特定元素的搜索算法。它的基本原理是每次比较中间元素,如果目标值小于中间元素,就在左半部分继续查找;如果目标值大于中间元素,就在右半部分继续查找;如果相等,则查找成功。

以下是二分查找的基本 Python 代码实现:

def binary_search(arr, x):
    low = 0
    high = len(arr) - 1

    while low <= high:
        mid = (low + high) // 2

        if arr[mid] == x:
            return mid
        elif arr[mid] < x:
            low = mid + 1
        else:
            high = mid - 1

    return -1

问题二:二分查找有哪些常见变种?

常见的变种包括:查找第一个等于目标值的元素、查找最后一个等于目标值的元素、查找第一个大于等于目标值的元素、查找最后一个小于等于目标值的元素等。

问题三:如何实现查找第一个等于目标值的元素?

def find_first_equal(arr, x):
    low = 0
    high = len(arr) - 1

    while low <= high:
        mid = (low + high) // 2

        if arr[mid] == x:
            if mid == 0 or arr[mid - 1]!= x:
                return mid
            else:
                high = mid - 1
        elif arr[mid] < x:
            low = mid + 1
        else:
            high = mid - 1

    return -1

问题四:如何实现查找最后一个等于目标值的元素?

def find_last_equal(arr, x):
    low = 0
    high = len(arr) - 1

    while low <= high:
        mid = (low + high) // 2

        if arr[mid] == x:
            if mid == len(arr) - 1 or arr[mid + 1]!= x:
                return mid
            else:
                low = mid + 1
        elif arr[mid] < x:
            low = mid + 1
        else:
            high = mid - 1

    return -1

问题五:二分查找变种在实际应用中的优势是什么?

以查找第一个大于等于目标值的元素为例,假设我们要在一个有序的价格列表中找到不低于某个预算的第一个价格。使用这种变种的二分查找可以快速定位到符合要求的价格,而无需遍历整个列表。

问题六:如何在实际项目中选择合适的二分查找变种?

这取决于具体的需求。如果需要找到特定范围内的起始或结束位置,就选择相应的变种。如果只是简单地查找是否存在某个值,基本的二分查找就足够了。

通过掌握这些二分查找的变种,在 Python 编程中能够更高效地解决各种搜索问题,让程序的性能和效率翻倍。

相关文章
|
3月前
|
缓存 供应链 监控
1688item_search_factory - 按关键字搜索工厂数据接口深度分析及 Python 实现
item_search_factory接口专为B2B电商供应链优化设计,支持通过关键词精准检索工厂信息,涵盖资质、产能、地理位置等核心数据,助力企业高效开发货源、分析产业集群与评估供应商。
|
4月前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
3月前
|
JSON 监控 数据格式
1688 item_search_app 关键字搜索商品接口深度分析及 Python 实现
1688开放平台item_search_app接口专为移动端优化,支持关键词搜索、多维度筛选与排序,可获取商品详情及供应商信息,适用于货源采集、价格监控与竞品分析,助力采购决策。
|
3月前
|
缓存 供应链 监控
VVIC seller_search 排行榜搜索接口深度分析及 Python 实现
VVIC搜款网seller_search接口提供服装批发市场的商品及商家排行榜数据,涵盖热销榜、销量排名、类目趋势等,支持多维度筛选与数据分析,助力选品决策、竞品分析与市场预测,为服装供应链提供有力数据支撑。
|
3月前
|
缓存 监控 算法
唯品会item_search - 按关键字搜索 VIP 商品接口深度分析及 Python 实现
唯品会item_search接口支持通过关键词、分类、价格等条件检索商品,广泛应用于电商数据分析、竞品监控与市场调研。结合Python可实现搜索、分析、可视化及数据导出,助力精准决策。
|
4月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
1101 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
3月前
|
Web App开发 缓存 监控
微店店铺商品搜索(item_search_shop)接口深度分析及 Python 实现
item_search_shop接口用于获取特定店铺的全部商品数据,支持批量获取商品列表、基础信息、价格、销量等,适用于竞品监控、商品归类及店铺分析等场景,助力全面了解店铺经营状况。
|
3月前
|
JSON 缓存 供应链
电子元件 item_search - 按关键字搜索商品接口深度分析及 Python 实现
本文深入解析电子元件item_search接口的设计逻辑与Python实现,涵盖参数化筛选、技术指标匹配、供应链属性过滤及替代型号推荐等核心功能,助力高效精准的电子元器件搜索与采购决策。
|
3月前
|
缓存 自然语言处理 算法
item_search - Lazada 按关键字搜索商品接口深度分析及 Python 实现
Lazada的item_search接口是关键词搜索商品的核心工具,支持多语言、多站点,可获取商品价格、销量、评分等数据,适用于市场调研与竞品分析。

推荐镜像

更多