告别阻塞,拥抱未来!Python 异步编程 asyncio 库实战指南!

简介: 【7月更文挑战第12天】Python的`asyncio`库是异步编程的关键,它允许程序在等待IO操作时执行其他任务,提升效率。异步函数用`async def`定义,`await`用于挂起执行。
高效处理并发任务和提升程序性能是至关重要的。Python 的异步编程为我们提供了一种强大的解决方案,而 `asyncio` 库则是实现这一目标的关键工具。

异步编程的核心思想是在等待某些操作(如网络请求、文件读取等)完成时,不阻塞程序的执行,而是让程序能够继续处理其他任务。这样可以极大地提高程序的效率和响应性。

asyncio 库提供了一系列的功能和方法来支持异步编程。首先,让我们看看如何定义一个异步函数。

import asyncio

async def my_async_function(name, delay):
    print(f"Starting {name}")
    await asyncio.sleep(delay)
    print(f"Finished {name}")

在上述代码中,async 关键字用于定义异步函数,await 则用于暂停异步函数的执行,等待一个异步操作完成。

接下来,我们可以使用 asyncio.run 来运行异步函数。

asyncio.run(my_async_function("Task 1", 2))

但在实际应用中,通常需要同时处理多个异步任务。这时,可以使用 asyncio.create_task 来创建任务并将它们添加到事件循环中。

async def multiple_tasks():
    task1 = asyncio.create_task(my_async_function("Task 1", 2))
    task2 = asyncio.create_task(my_async_function("Task 2", 3))
    await asyncio.gather(task1, task2)

asyncio.run(multiple_tasks())

asyncio.gather 用于等待多个异步任务完成。

再来看一个更具实际意义的例子,假设我们要实现一个异步的网络请求。

import aiohttp

async def fetch_data(url):
    async with aiohttp.ClientSession() as session:
        async with session.get(url) as response:
            data = await response.text()
            print(f"Fetched data from {url}: {data[:100]}...")

urls = ["https://example.com", "https://another.example.com"]

async def main():
    tasks = [fetch_data(url) for url in urls]
    await asyncio.gather(*tasks)

asyncio.run(main())

在这个例子中,我们使用 aiohttp 库进行异步的网络请求,能够同时获取多个网页的数据,而不会相互阻塞。

此外,asyncio 还支持处理异常。在异步函数中,可以使用 try/except 来捕获和处理异常。

async def async_function_with_error(name, delay):
    try:
        print(f"Starting {name}")
        await asyncio.sleep(delay)
        if delay > 4:
            raise Exception(f"Error in {name}")
        print(f"Finished {name}")
    except Exception as e:
        print(f"Error occurred in {name}: {e}")

asyncio.run(async_function_with_error("Task with Error", 5))

通过 asyncio 库的强大功能,我们能够轻松实现高效的异步编程,告别阻塞带来的性能瓶颈,为构建高性能、响应迅速的应用程序奠定坚实基础。

目录
相关文章
|
3月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
265 0
|
3月前
|
数据采集 数据库 开发者
利用Python asyncio实现高效异步编程
利用Python asyncio实现高效异步编程
270 100
|
2月前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
268 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
2月前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
341 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
2月前
|
数据采集 监控 数据库
Python异步编程实战:爬虫案例
🌟 蒋星熠Jaxonic,代码为舟的星际旅人。从回调地狱到async/await协程天堂,亲历Python异步编程演进。分享高性能爬虫、数据库异步操作、限流监控等实战经验,助你驾驭并发,在二进制星河中谱写极客诗篇。
Python异步编程实战:爬虫案例
|
3月前
|
调度 数据库 Python
Python异步编程入门:asyncio让并发变得更简单
Python异步编程入门:asyncio让并发变得更简单
226 5
|
搜索推荐 程序员 调度
精通Python异步编程:利用Asyncio与Aiohttp构建高效网络应用
【10月更文挑战第5天】随着互联网技术的快速发展,用户对于网络应用的响应速度和服务质量提出了越来越高的要求。为了构建能够处理高并发请求、提供快速响应时间的应用程序,开发者们需要掌握高效的编程技术和框架。在Python语言中,`asyncio` 和 `aiohttp` 是两个非常强大的库,它们可以帮助我们编写出既简洁又高效的异步网络应用。
459 1
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
459 2
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。

推荐镜像

更多